Saturday, November 22, 2025
HomeLanguagesscipy stats.chi() | Python

scipy stats.chi() | Python

scipy.stats.chi() is an chi continuous random variable that is defined with a standard format and some shape parameters to complete its specification.

Parameters :
q : lower and upper tail probability
x : quantiles
loc : [optional] location parameter. Default = 0
scale : [optional] scale parameter. Default = 1
size : [tuple of ints, optional] shape or random variates.
moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).

Results : chi continuous random variable

Special Cases :

  • chi(1, loc, scale) = halfnormal
  • chi(2, 0, scale) = rayleigh
  • chi(3, 0, scale) : maxwell

Code #1 : Creating chi continuous random variable




# importing scipy
from scipy.stats import chi 
  
numargs = chi.numargs
[a] = [0.6, ] * numargs
rv = chi(a)
  
print ("RV : \n", rv) 


Output :

RV : 
 <scipy.stats._distn_infrastructure.rv_frozen object at 0x000002948537C6D8>

Code #2 : chi random variates and probability distribution.




import numpy as np
quantile = np.arange (0.01, 1, 0.1)
   
# Random Variates
R = chi.rvs(a, scale = 2,  size = 10)
print ("Random Variates : \n", R)
  
# PDF
R = chi.pdf(a, quantile, loc = 0, scale = 1)
print ("\nProbability Distribution : \n", R)


Output :

Random Variates : 
 [2.40483665 1.68478304 0.01664071 2.48977805 3.66286843 1.68463842
 0.14434643 0.67812242 0.46190886 1.99973997]

Probability Distribution : 
 [0.01384193 0.14349716 0.25719966 0.35519439 0.43801475 0.50641521
 0.56131243 0.60373433 0.63477687 0.65556791]
 

Code #3 : Graphical Representation.




import numpy as np
import matplotlib.pyplot as plt
  
distribution = np.linspace(0, np.minimum(rv.dist.b, 5))
print("Distribution : \n", distribution)
  
plot = plt.plot(distribution, rv.pdf(distribution))


Output :

Distribution : 
Distribution : 
 [0.         0.10204082 0.20408163 0.30612245 0.40816327 0.51020408
 0.6122449  0.71428571 0.81632653 0.91836735 1.02040816 1.12244898
 1.2244898  1.32653061 1.42857143 1.53061224 1.63265306 1.73469388
 1.83673469 1.93877551 2.04081633 2.14285714 2.24489796 2.34693878
 2.44897959 2.55102041 2.65306122 2.75510204 2.85714286 2.95918367
 3.06122449 3.16326531 3.26530612 3.36734694 3.46938776 3.57142857
 3.67346939 3.7755102  3.87755102 3.97959184 4.08163265 4.18367347
 4.28571429 4.3877551  4.48979592 4.59183673 4.69387755 4.79591837
 4.89795918 5.        ]

Code #4 : Varying Positional Arguments




import matplotlib.pyplot as plt
import numpy as np
  
x = np.linspace(0, 5, 100)
  
# Varying positional arguments
y1 = chi.pdf(x, 1, 6)
y2 = chi.pdf(x, 1, 4)
plt.plot(x, y1, "*", x, y2, "r--")


Output :

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32407 POSTS0 COMMENTS
Milvus
97 POSTS0 COMMENTS
Nango Kala
6784 POSTS0 COMMENTS
Nicole Veronica
11931 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11999 POSTS0 COMMENTS
Shaida Kate Naidoo
6907 POSTS0 COMMENTS
Ted Musemwa
7168 POSTS0 COMMENTS
Thapelo Manthata
6863 POSTS0 COMMENTS
Umr Jansen
6848 POSTS0 COMMENTS