Saturday, January 11, 2025
Google search engine
HomeLanguagessciPy stats.binned_statistic_2d() function | Python

sciPy stats.binned_statistic_2d() function | Python

stats.binned_statistic_2d(arr1, arr2, values, statistic='mean', bins=10, range=None) function computes the binned statistics value for the given two dimensional data.
It works similar to histogram2d. As histogram function makes bins and counts the no. of points in each bin; this function computes the sum, mean, median, count or other statistics of the values for each bin.

Parameters :
arr1 : [array_like]input array to be binned along the first dimension.
arr2 : [array_like]input array to be binned along the second dimension.
values : [array_like]on which stats to be calculated.
statistics : Statistics to compute {mean, count, median, sum, function}. Default is mean.
bin : [int or scalars]If bins is an int, it defines the number of equal-width bins in the given range (10, by default). If bins is a sequence, it defines the bin edges.
range : (float, float) Lower and upper range of the bins and if not provided, range is from x.max() to x.min().

Results : Statistics value for each bin; bin edges along first and second dimension; bin number.

Code #1 :




# stats.binned_statistic_2d() method 
import numpy as np
from scipy import stats
  
x = np.random.rand(10)
y = np.random.rand(10)
  
z = np.arange(10)
  
print ("x : \n", x)
print ("\ny : \n", y)
print ("\nz : \n", z)
  
# count
print ("\nbinned_statistic_2d for count : "
       stats.binned_statistic_2d(x, y, values = z, 
                statistic ='count', bins = [5, 5]))


Output :

x :
[0.31218238 0.86791445 0.42763346 0.79798587 0.91361299 0.09005856
0.54419846 0.18973948 0.67016378 0.8083121 ]

y :
[0.35959238 0.69265819 0.18751529 0.98863414 0.97810927 0.24054104
0.76764562 0.60635485 0.61551806 0.63884672]

z :
[0 1 2 3 4 5 6 7 8 9]

binned_statistic_2d for count : BinnedStatistic2dResult(statistic=array([[1., 0., 1., 0., 0.],
[0., 1., 0., 0., 0.],
[1., 0., 0., 1., 0.],
[0., 0., 1., 0., 0.],
[0., 0., 1., 1., 2.]]), x_edge=array([0.09005856, 0.25476945, 0.41948033, 0.58419122, 0.74890211,
0.91361299]), y_edge=array([0.18751529, 0.34773906, 0.50796283, 0.6681866, 0.82841037,
0.98863414]), binnumber=array([16, 39, 22, 40, 40, 8, 25, 10, 31, 38], dtype=int64))

 
Code #2 :




# stats.binned_statistic_2d() method 
import numpy as np
from scipy import stats
  
x = np.random.rand(10)
y = np.random.rand(10)
z = np.arange(10)
  
# mean
print ("\nbinned_statistic_2d for mean : "
       stats.binned_statistic_2d(x, y, values = z,
                   statistic ='mean', bins = [5, 5])) 


Output :

binned_statistic_2d for mean : BinnedStatistic2dResult(statistic=array([[5., nan, 7., nan, nan],
[nan, 0., nan, nan, nan],
[2., nan, nan, 6., nan],
[nan, nan, 8., nan, nan],
[nan, nan, 9., 1., 3.5]]), x_edge=array([0.09005856, 0.25476945, 0.41948033, 0.58419122, 0.74890211,
0.91361299]), y_edge=array([0.18751529, 0.34773906, 0.50796283, 0.6681866, 0.82841037,
0.98863414]), binnumber=array([16, 39, 22, 40, 40, 8, 25, 10, 31, 38], dtype=int64))

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments