Friday, December 12, 2025
HomeLanguagesscipy stats.arcsine() | Python

scipy stats.arcsine() | Python

scipy.stats.arcsine() is an arcsine continuous random variable that is defined with a standard format and some shape parameters to complete its specification.

Parameters :
q : lower and upper tail probability
x : quantiles
loc : [optional]location parameter. Default = 0
scale : [optional]scale parameter. Default = 1
size : [tuple of ints, optional] shape or random variates.
moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).

Results : arcsine continuous random variable

Code #1 : Creating arcsine continuous random variable




# importing scipy
from scipy.stats import arcsine
  
numargs = arcsine.numargs
[ ] = [0.6, ] * numargs
rv = arcsine()
  
print ("RV : \n", rv)


Output :

RV :  
<scipy.stats._distn_infrastructure.rv_frozen object at 0x0000029484D796D8>

Code #2 : arcsine random variates and probability distribution function.




quantile = np.arange (0.01, 1, 0.1)
   
# Random Variates
R = arcsine.rvs(scale = 2,  size = 10)
print ("Random Variates : \n", R)
  
# PDF
R = arcsine.pdf(x = quantile, scale = 2)
print ("\nProbability Distribution : \n", R)


Output:

Random Variates : 
 [1.17353658 1.96350916 1.73419819 0.71255312 0.28760466 1.54410451
 1.9644408  0.35014597 0.26798525 0.24599504]

Probability Distribution : 
 [2.25643896 0.69810843 0.51917523 0.43977033 0.39423905 0.3651505
 0.34568283 0.33260295 0.32421577 0.31960693]

Code #3 : Graphical Representation.




# libraries
import numpy as np
import matplotlib.pyplot as plt
  
distribution = np.linspace(0, np.minimum(rv.dist.b, 3))
print ("Distribution : \n", distribution)
  
plot = plt.plot(distribution, rv.pdf(distribution))


Output :

Distribution : 
 [0.         0.02040816 0.04081633 0.06122449 0.08163265 0.10204082
 0.12244898 0.14285714 0.16326531 0.18367347 0.20408163 0.2244898
 0.24489796 0.26530612 0.28571429 0.30612245 0.32653061 0.34693878
 0.36734694 0.3877551  0.40816327 0.42857143 0.44897959 0.46938776
 0.48979592 0.51020408 0.53061224 0.55102041 0.57142857 0.59183673
 0.6122449  0.63265306 0.65306122 0.67346939 0.69387755 0.71428571
 0.73469388 0.75510204 0.7755102  0.79591837 0.81632653 0.83673469
 0.85714286 0.87755102 0.89795918 0.91836735 0.93877551 0.95918367
 0.97959184 1.        ]

Code #4: Varying Location and Scale




from scipy.stats import arcsine
import matplotlib.pyplot as plt
import numpy as np
a = 2
b = 2
x = np.linspace(0, np.minimum(rv.dist.b, 3))
  
# Varying location and scale
y1 = arcsine.pdf(x, -0.1, .8)
y2 = arcsine.pdf(x, -3.25, 3.25)
plt.plot(x, y1, "*", x, y2, "r--")


Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32445 POSTS0 COMMENTS
Milvus
105 POSTS0 COMMENTS
Nango Kala
6813 POSTS0 COMMENTS
Nicole Veronica
11952 POSTS0 COMMENTS
Nokonwaba Nkukhwana
12028 POSTS0 COMMENTS
Shaida Kate Naidoo
6947 POSTS0 COMMENTS
Ted Musemwa
7198 POSTS0 COMMENTS
Thapelo Manthata
6893 POSTS0 COMMENTS
Umr Jansen
6881 POSTS0 COMMENTS