There are n servers. Each server i is currently processing a(i) amount of requests. There is another array b in which b(i) represents the number of incoming requests that are scheduled to server i. Reschedule the incoming requests in such a way that each server i holds an equal amount of requests after rescheduling. An incoming request to server i can be rescheduled only to server i-1, i, i+1. If there is no such rescheduling possible then output -1 else print number of requests hold by each server after rescheduling.
Examples:Â
Input : a = {6, 14, 21, 1} b = {15, 7, 10, 10} Output : 21 b(0) scheduled to a(0) --> a(0) = 21 b(1) scheduled to a(1) --> a(1) = 21 b(2) scheduled to a(3) --> a(3) = 11 b(3) scheduled to a(3) --> a(3) = 21 a(2) remains unchanged --> a(2) = 21 Input : a = {1, 2, 3} b = {1, 100, 3} Output : -1 No rescheduling will result in equal requests.
Approach: Observe that each element of array b is always added to any one element of array a exactly once. Thus the sum of all elements of array b + sum of all elements of old array a = sum of all elements of new array a. Let this sum be S. Also all the elements of new array a are equal. Let each new element is x. If array a has n elements, this givesÂ
x * n = S => x = S/n ....(1)
Thus all the equal elements of new array a is given by eqn(1). Now to make each a(i) equals to x we need to add x-a(i) to each element. We will iterate over entire array a and check whether a(i) can be made equal to x. There are multiple possibilities:Â
- a(i) > x: In this case a(i) can never be made equal to x. So output -1.Â
- a(i) + b(i) + b(i+1) = x. Simply add b(i) + b(i+1) to a(i) and update b(i), b(i+1) to zero.Â
- a(i) + b(i) = x. Add b(i) to a(i) and update b(i) to zero.Â
- Â a(i) + b(i+1) = x. Add b(i+1) to a(i) and update b(i+1) to zero.
After array a is completely traversed, check whether all elements of array b are zero or not. If yes then print a(0) otherwise print -1.
Why b(i) is updated to zero after addition?Â
Consider a test case in which b(i) is neither added to a(i-1) nor a(i). In that case, we are bounded to add b(i) to a(i+1). Thus while iterating over the array a when we begin performing computations on element a(i), first we add element b(i-1) to a(i) to take into consideration above possibility. Now if b(i-1) is already added to a(i-1) or a(i-2) then, in that case, it cannot be added to a(i). So to avoid this double addition of b(i) it is updated to zero.Â
The stepwise algorithm is:
1. Compute sum S and find x = S / n 2. Iterate over array a 3. for each element a(i) do: a(i) += b(i-1) b(i-1) = 0; if a(i) > x: break else: check for other three possibilities and update a(i) and b(i). 4. Check whether all elements of b(i) are zero or not.
Implementation:Â Â
C++
// CPP program to schedule jobs so that // each server gets equal load. #include <bits/stdc++.h> using namespace std; Â
// Function to find new array a int solve( int a[], int b[], int n) { Â Â Â Â int i; Â Â Â Â long long int s = 0; Â
    // find sum S of both arrays a and b.     for (i = 0; i < n; i++)         s += (a[i] + b[i]);   Â
    // Single element case.     if (n == 1)         return a[0] + b[0]; Â
    // This checks whether sum s can be divided     // equally between all array elements. i.e.     // whether all elements can take equal value     // or not.     if (s % n != 0)         return -1; Â
    // Compute possible value of new array     // elements.     int x = s / n; Â
    for (i = 0; i < n; i++) { Â
        // Possibility 1         if (a[i] > x)             return -1;     Â
        // ensuring that all elements of         // array b are used.         if (i > 0) {             a[i] += b[i - 1];             b[i - 1] = 0;         } Â
        // If a(i) already updated to x         // move to next element in array a.         if (a[i] == x)             continue ; Â
        // Possibility 2         int y = a[i] + b[i];         if (i + 1 < n)             y += b[i + 1];         if (y == x) {             a[i] = y;             b[i] = b[i + 1] = 0;             continue ;         } Â
        // Possibility 3         if (a[i] + b[i] == x) {             a[i] += b[i];             b[i] = 0;             continue ;         } Â
        // Possibility 4         if (i + 1 < n &&             a[i] + b[i + 1] == x) {             a[i] += b[i + 1];             b[i + 1] = 0;             continue ;         } Â
        // If a(i) can not be made equal         // to x even after adding all         // possible elements from b(i)         // then print -1.         return -1;     } Â
    // check whether all elements of b     // are used.     for (i = 0; i < n; i++)         if (b[i] != 0)             return -1;   Â
    // Return the new array element value.     return x; } Â
int main() { Â Â Â Â int a[] = { 6, 14, 21, 1 }; Â Â Â Â int b[] = { 15, 7, 10, 10 }; Â Â Â Â int n = sizeof (a) / sizeof (a[0]); Â Â Â Â cout << solve(a, b, n); Â Â Â Â return 0; } |
Java
// Java program to schedule jobs so that // each server gets equal load. class GFG { Â
// Function to find new array a static int solve( int a[], int b[], int n) { Â Â Â Â int i; Â Â Â Â int s = 0 ; Â
    // find sum S of both arrays a and b.     for (i = 0 ; i < n; i++)         s += (a[i] + b[i]); Â
    // Single element case.     if (n == 1 )         return a[ 0 ] + b[ 0 ]; Â
    // This checks whether sum s can be divided     // equally between all array elements. i.e.     // whether all elements can take equal value     // or not.     if (s % n != 0 )         return - 1 ; Â
    // Compute possible value of new array     // elements.     int x = s / n; Â
    for (i = 0 ; i < n; i++)     { Â
        // Possibility 1         if (a[i] > x)             return - 1 ;    Â
        // ensuring that all elements of         // array b are used.         if (i > 0 )         {             a[i] += b[i - 1 ];             b[i - 1 ] = 0 ;         } Â
        // If a(i) already updated to x         // move to next element in array a.         if (a[i] == x)             continue ; Â
        // Possibility 2         int y = a[i] + b[i];         if (i + 1 < n)             y += b[i + 1 ];         if (y == x)         {             a[i] = y;             b[i]= 0 ;             continue ;         } Â
        // Possibility 3         if (a[i] + b[i] == x)         {             a[i] += b[i];             b[i] = 0 ;             continue ;         } Â
        // Possibility 4         if (i + 1 < n &&             a[i] + b[i + 1 ] == x)         {             a[i] += b[i + 1 ];             b[i + 1 ] = 0 ;             continue ;         } Â
        // If a(i) can not be made equal         // to x even after adding all         // possible elements from b(i)         // then print -1.         return - 1 ;     } Â
    // check whether all elements of b     // are used.     for (i = 0 ; i < n; i++)         if (b[i] != 0 )             return - 1 ; Â
    // Return the new array element value.     return x; } Â
// Driver code public static void main(String[] args) { Â Â Â Â int a[] = { 6 , 14 , 21 , 1 }; Â Â Â Â int b[] = { 15 , 7 , 10 , 10 }; Â Â Â Â int n = a.length; Â Â Â Â System.out.println(solve(a, b, n)); } } Â
// This code contributed by Rajput-Ji |
Python3
# Python3 program to schedule jobs so that # each server gets an equal load. Â
# Function to find new array a def solve(a, b, n): Â
    s = 0 Â
    # find sum S of both arrays a and b.     for i in range ( 0 , n):         s + = a[i] + b[i]    Â
    # Single element case.     if n = = 1 :         return a[ 0 ] + b[ 0 ] Â
    # This checks whether sum s can be divided     # equally between all array elements. i.e.     # whether all elements can take equal value     # or not.     if s % n ! = 0 :         return - 1 Â
    # Compute possible value of new     # array elements.     x = s / / n Â
    for i in range ( 0 , n): Â
        # Possibility 1         if a[i] > x:             return - 1    Â
        # ensuring that all elements of         # array b are used.         if i > 0 :             a[i] + = b[i - 1 ]             b[i - 1 ] = 0                  # If a(i) already updated to x         # move to next element in array a.         if a[i] = = x:             continue Â
        # Possibility 2         y = a[i] + b[i]         if i + 1 < n:             y + = b[i + 1 ]                  if y = = x:             a[i] = y             b[i] = 0             if i + 1 < n: b[i + 1 ] = 0             continue                  # Possibility 3         if a[i] + b[i] = = x:             a[i] + = b[i]             b[i] = 0             continue                  # Possibility 4         if i + 1 < n and a[i] + b[i + 1 ] = = x:             a[i] + = b[i + 1 ]             b[i + 1 ] = 0             continue                  # If a(i) can not be made equal         # to x even after adding all         # possible elements from b(i)         # then print -1.         return - 1          # check whether all elements of b     # are used.     for i in range ( 0 , n):         if b[i] ! = 0 :             return - 1    Â
    # Return the new array element value.     return x Â
# Driver Code if __name__ = = "__main__" : Â
    a = [ 6 , 14 , 21 , 1 ]     b = [ 15 , 7 , 10 , 10 ]     n = len (a)     print (solve(a, b, n))      # This code is contributed by Rituraj Jain |
C#
// C# program to schedule jobs so that // each server gets equal load. using System; Â
class GFG { Â
// Function to find new array a static int solve( int []a, int []b, int n) { Â Â Â Â int i; Â Â Â Â int s = 0; Â
    // find sum S of both arrays a and b.     for (i = 0; i < n; i++)         s += (a[i] + b[i]); Â
    // Single element case.     if (n == 1)         return a[0] + b[0]; Â
    // This checks whether sum s can be divided     // equally between all array elements. i.e.     // whether all elements can take equal value     // or not.     if (s % n != 0)         return -1; Â
    // Compute possible value of new array     // elements.     int x = s / n; Â
    for (i = 0; i < n; i++)     { Â
        // Possibility 1         if (a[i] > x)             return -1; Â
        // ensuring that all elements of         // array b are used.         if (i > 0)         {             a[i] += b[i - 1];             b[i - 1] = 0;         } Â
        // If a(i) already updated to x         // move to next element in array a.         if (a[i] == x)             continue ; Â
        // Possibility 2         int y = a[i] + b[i];         if (i + 1 < n)             y += b[i + 1];         if (y == x)         {             a[i] = y;             b[i]= 0;             continue ;         } Â
        // Possibility 3         if (a[i] + b[i] == x)         {             a[i] += b[i];             b[i] = 0;             continue ;         } Â
        // Possibility 4         if (i + 1 < n &&             a[i] + b[i + 1] == x)         {             a[i] += b[i + 1];             b[i + 1] = 0;             continue ;         } Â
        // If a(i) can not be made equal         // to x even after adding all         // possible elements from b(i)         // then print -1.         return -1;     } Â
    // check whether all elements of b     // are used.     for (i = 0; i < n; i++)         if (b[i] != 0)             return -1; Â
    // Return the new array element value.     return x; } Â
// Driver code public static void Main(String[] args) { Â Â Â Â int []a = { 6, 14, 21, 1 }; Â Â Â Â int []b = { 15, 7, 10, 10 }; Â Â Â Â int n = a.Length; Â Â Â Â Console.WriteLine(solve(a, b, n)); } } Â
// This code has been contributed by 29AjayKumar |
Javascript
<script> Â
// JavaScript program to schedule jobs so that // each server gets equal load. Â
 // Function to find new array a function solve(a, b, n) {     let i;     let s = 0;        // find sum S of both arrays a and b.     for (i = 0; i < n; i++)         s += (a[i] + b[i]);        // Single element case.     if (n == 1)         return a[0] + b[0];        // This checks whether sum s can be divided     // equally between all array elements. i.e.     // whether all elements can take equal value     // or not.     if (s % n != 0)         return -1;        // Compute possible value of new array     // elements.     let x = s / n;        for (i = 0; i < n; i++)     {            // Possibility 1         if (a[i] > x)             return -1;               // ensuring that all elements of         // array b are used.         if (i > 0)         {             a[i] += b[i - 1];             b[i - 1] = 0;         }            // If a(i) already updated to x         // move to next element in array a.         if (a[i] == x)             continue ;            // Possibility 2         let y = a[i] + b[i];         if (i + 1 < n)             y += b[i + 1];         if (y == x)         {             a[i] = y;             b[i]= 0;             continue ;         }            // Possibility 3         if (a[i] + b[i] == x)         {             a[i] += b[i];             b[i] = 0;             continue ;         }            // Possibility 4         if (i + 1 < n &&             a[i] + b[i + 1] == x)         {             a[i] += b[i + 1];             b[i + 1] = 0;             continue ;         }            // If a(i) can not be made equal         // to x even after adding all         // possible elements from b(i)         // then print -1.         return -1;     }        // check whether all elements of b     // are used.     for (i = 0; i < n; i++)         if (b[i] != 0)             return -1;        // Return the new array element value.     return x; } Â
// Driver Code     let a = [6, 14, 21, 1];     let b = [15, 7, 10, 10];     let n = a.length;     document.write(solve(a, b, n)); Â
// This code is contributed by avijitmondal1998. </script> |
21
Time Complexity: O(n)Â
Auxiliary Space : O(1) If we are not allowed to modify original arrays, then O(n)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!