Friday, December 27, 2024
Google search engine
HomeData Modelling & AIRoots of the quadratic equation when a + b + c =...

Roots of the quadratic equation when a + b + c = 0 without using Shridharacharya formula

Given three integers a, b and c such that a + b + c = 0. The task is to find the roots of a quadratic equation ax2 + bx + c = 0.
Examples: 
 

Input: a = 1, b = 2, c = -3 
Output: 1, -3
Input: a = -5, b = 3, c = 2 
Output: 1, -2.5 
 

 

Approach: When a + b + c = 0 then the roots of the equation ax2 + bx + c = 0 are always 1 and c / a
For example, 
 

Take a = 3, b = 2 and c = -5 such that a + b + c = 0 
Now, the equation will be 3x2 + 2x – 5 = 0 
Solving for x, 
3x2 + 5x – 3x – 5 = 0 
x * (3x + 5) -1 * (3x + 5) = 0 
(x – 1) * (3x + 5) = 0 
x = 1, x = (-5 / 3) = (c / a) 
 

Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to print the roots of the
// quadratic equation when a + b + c = 0
void printRoots(long a, long b, long c)
{
    cout << 1 << ", " << c / (a * 1.0);
}
 
// Driver code
int main()
{
    long a = 2;
    long b = 3;
    long c = -5;
    printRoots(a, b, c);
 
    return 0;
}


Java




// Java implementation of the approach
class GFG
{
     
    // Function to print the roots of the
    // quadratic equation when a + b + c = 0
    static void printRoots(long a, long b, long c)
    {
        System.out.println(1 + ", " + c / (a * 1.0));
    }
     
    // Driver Code
    public static void main (String[] args)
    {
        long a = 2;
        long b = 3;
        long c = -5;
        printRoots(a, b, c);
    }
}
 
// This code is contributed by
// sanjeev2552


Python3




# Python3 implementation of the approach
 
# Function to print the roots of the
# quadratic equation when a + b + c = 0
def printRoots(a, b, c):
    print(1, ",", c / (a * 1.0))
 
# Driver code
a = 2
b = 3
c = -5
printRoots(a, b, c)
 
# This code is contributed by Mohit Kumar


C#




// C# implementation of the approach
using System;
 
class GFG
{
 
// Function to print the roots of the
// quadratic equation when a + b + c = 0
static void printRoots(long a, long b, long c)
{
    Console.WriteLine("1, " + c / (a * 1.0));
}
 
// Driver code
public static void Main()
{
    long a = 2;
    long b = 3;
    long c = -5;
    printRoots(a, b, c);
}
}
 
// This code is contributed by Nidhi


PHP




<?php
// PHP implementation of the approach
 
// Function to print the roots of the
// quadratic equation when a + b + c = 0
function printRoots($a, $b, $c)
{
    echo "1";
    echo ", ";
    echo $c / ($a * 1.0);
}
 
// Driver code
$a = 2;
$b = 3;
$c = -5;
printRoots($a, $b, $c);
 
// This code is contributed by Naman_Garg.
?>


Javascript




<script>
// Javascript implementation of the approach
 
// Function to print the roots of the
// quadratic equation when a + b + c = 0
function printRoots(a, b, c)
{
    document.write(1 + ", " + c / (a * 1.0));
}
 
// Driver code
var a = 2;
var b = 3;
var c = -5;
printRoots(a, b, c);
 
// This code is contributed by noob2000.
</script>


Output: 

1, -2.5

 

Time Complexity: O(1), there is only basic arithmetic that happens in constant time.

Auxiliary Space: O(1), no extra space is taken.
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments