Wednesday, January 15, 2025
Google search engine
HomeData Modelling & AIRight-Truncatable Prime

Right-Truncatable Prime

A Right-truncatable prime is a prime which remains prime when the last (“right”) digit is successively removed. For example, 239 is right-truncatable prime since 239, 23 and 2 are all prime. There are 83 right-truncatable primes.
The task is to check whether the given number (N > 0) is right-truncatable prime or not. 
Examples: 
 

Input: 239
Output: Yes

Input: 101
Output: No
101 is not right-truncatable prime because 
numbers formed are 101, 10 and 1. Here, 101 
is prime but 10 and 1 are not prime.

 

The idea is to generate all the primes less than or equal to the given number N using Sieve of Eratosthenes. Once we have generated all such primes, then we check whether the number remains prime when the last (“right”) digit is successively removed.
 

C++




//C++ Program to check
// whether a given number
// is right-truncatable
// prime or not.
#include<bits/stdc++.h>
using namespace std;
 
// Generate all prime numbers less than n.
bool sieveOfEratosthenes(int n, bool isPrime[])
{
    // Initialize all entries
    // of boolean array as
    // true. A value in
    // isPrime[i] will finally
    // be false if i is Not a
    // prime, else true
    // bool isPrime[n+1];
    isPrime[0] = isPrime[1] = false;
    for( int i = 2; i <= n; i++)
        isPrime[i] = true;
 
    for (int p = 2; p * p<=n; p++)
    {
 
        // If isPrime[p] is not changed, then it is
        // a prime
        if (isPrime[p] == true)
        {
            // Update all multiples of p
            for (int i = p * 2; i <= n; i += p)
                isPrime[i] = false;
 
        }
    }
}
 
// Returns true if n is right-truncatable,
// else false
bool rightTruPrime(int n)
{
    // Generating primes using Sieve
    bool isPrime[n+1];
    sieveOfEratosthenes(n, isPrime);
 
    // Checking whether the number remains
    // prime when the last ("right")
    // digit is successively removed
    while (n)
    {
        if (isPrime[n])
            n = n / 10;
        else
            return false;
    }
    return true;
}
 
// Driver program
int main()
{
    int n = 59399;
    if (rightTruPrime(n))
        cout << "Yes" << endl;
    else
        cout << "No" << endl;
    return 0;
}


Java




// Java code to check
// right-truncatable
// prime or not.
import java.io.*;
 
class GFG {
     
    // Generate all prime
    // numbers less than n.
    static void sieveOfEratosthenes
                (int n, boolean isPrime[])
    {
         
        // Initialize all entries of
        // boolean array as true. A
        // value in isPrime[i] will
        // finally be false if i is
        // Not a prime, else true
        // bool isPrime[n+1];
        isPrime[0] = isPrime[1] = false;
        for (int i = 2; i <= n; i++)
            isPrime[i] = true;
     
        for (int p=2; p*p<=n; p++)
        {
            // If isPrime[p] is not
            // changed, then it
            // is a prime
            if (isPrime[p] == true)
            {
                // Update all multiples of p
                for (int i = p * 2; i <= n; i += p)
                    isPrime[i] = false;
            }
        }
    }
     
    // Returns true if n is
    // right-truncatable,
    // else false
    static boolean rightTruPrime(int n)
     {
         
        // Generating primes using Sieve
        boolean isPrime[] = new boolean[n+1];
        sieveOfEratosthenes(n, isPrime);
     
        // Checking whether the number
        // remains prime when the last (right)
        // digit is successively removed
        while (n != 0)
        {
             
            if (isPrime[n])
                n = n / 10;
            else
                return false;
        }
        return true;
    }
     
    // Driver program
    public static void main(String args[])
    {
        int n = 59399;
         
        if (rightTruPrime(n))
            System.out.println("Yes");
        else
            System.out.println("No");
    }
}
 
/* This code is contributed by Nikita Tiwari.*/


Python3




# Python3 Program to check
# whether a given number
# is right-truncatable
# prime or not.
 
# Generate all prime numbers less than n.
def sieveOfEratosthenes(n,isPrime) :
     
    # Initialize all entries
    # of boolean array as
    # true. A value in isPrime[i]
    # will finally be false if
    # i is Not a prime, else true
    # bool isPrime[n+1];
    isPrime[0] = isPrime[1] = False
    for i in range(2, n+1) :
        isPrime[i] = True
    p = 2
    while(p * p <= n) :
        # If isPrime[p] is not changed, then it is
        # a prime
        if (isPrime[p] == True) :
            # Update all multiples of p
            i = p * 2
            while(i <= n) :
                isPrime[i] = False
                i = i + p
        p = p + 1
         
 
# Returns true if n is right-truncatable, else false
def rightTruPrime(n) :
    # Generating primes using Sieve
    isPrime=[None] * (n+1)
    sieveOfEratosthenes(n, isPrime)
 
    # Checking whether the
    # number remains prime
    # when the last ("right")
    # digit is successively
    # removed
    while (n != 0) :
        if (isPrime[n]) :
            n = n // 10    
        else :
            return False
     
    return True
 
 
# Driven program
n = 59399
if (rightTruPrime(n)) :
    print("Yes")
else :
    print("No")
 
# This code is contributed by Nikita Tiwari.


C#




// C# code to check right-
// truncatable prime or not
using System;
 
class GFG {
 
    // Generate all prime
    // numbers less than n.
    static void sieveOfEratosthenes(int n, bool[] isPrime)
    {
 
        // Initialize all entries of
        // boolean array as true. A
        // value in isPrime[i] will
        // finally be false if i is
        // Not a prime, else true
        // bool isPrime[n+1];
        isPrime[0] = isPrime[1] = false;
 
        for (int i = 2; i <= n; i++)
            isPrime[i] = true;
 
        for (int p = 2; p * p <= n; p++) {
            // If isPrime[p] is not
            // changed, then it
            // is a prime
            if (isPrime[p] == true) {
                // Update all multiples of p
                for (int i = p * 2; i <= n; i += p)
                    isPrime[i] = false;
            }
        }
    }
 
    // Returns true if n is right-
    // truncatable,  else false
    static bool rightTruPrime(int n)
    {
 
        // Generating primes using Sieve
        bool[] isPrime = new bool[n + 1];
        sieveOfEratosthenes(n, isPrime);
 
        // Checking whether the number
        // remains prime when last (right)
        // digit is successively removed
        while (n != 0) {
 
            if (isPrime[n])
                n = n / 10;
            else
                return false;
        }
        return true;
    }
 
    // Driven program
    public static void Main()
    {
        int n = 59399;
 
        if (rightTruPrime(n))
            Console.WriteLine("Yes");
        else
            Console.WriteLine("No");
    }
}
 
// This code is contributed by Anant Agarwal


PHP




<?php
// Program to check whether a given number
// is right-truncatable prime or not.
 
// Generate all prime numbers less than n.
function sieveOfEratosthenes($n, &$isPrime)
{
    // Initialize all entries of boolean
    // array as true. A value in isPrime[i]
    // will finally be false if i is Not a
    // prime, else true bool isPrime[n+1];
    $isPrime[0] = $isPrime[1] = false;
 
    for ($p = 2; $p * $p <= $n; $p++)
    {
 
        // If isPrime[p] is not changed,
        // then it is a prime
        if ($isPrime[$p] == true)
        {
            // Update all multiples of p
            for ($i = $p * 2; $i <= $n; $i += $p)
                $isPrime[$i] = false;
 
        }
    }
}
 
// Returns true if n is right-truncatable,
// else false
function rightTruPrime($n)
{
    // Generating primes using Sieve
    $isPrime = array_fill(0, $n + 1, true);
    sieveOfEratosthenes($n, $isPrime);
 
    // Checking whether the number remains
    // prime when the last ("right")
    // digit is successively removed
    while ($n)
    {
        if ($isPrime[$n])
            $n = (int)($n / 10);
        else
            return false;
    }
    return true;
}
 
// Driver Code
$n = 59399;
if (rightTruPrime($n))
    echo "Yes\n";
else
    echo "No\n";
 
// This code is contributed by mits
?>


Javascript




<script>
// javascript code to check
// right-truncatable
// prime or not.
 
    // Generate all prime
    // numbers less than n.
    function sieveOfEratosthenes(n, isPrime)
    {
 
        // Initialize all entries of
        // boolean array as true. A
        // value in isPrime[i] will
        // finally be false if i is
        // Not a prime, else true
        // bool isPrime[n+1];
        isPrime[0] = isPrime[1] = false;
        for (let i = 2; i <= n; i++)
            isPrime[i] = true;
 
        for (let p = 2; p * p <= n; p++) {
            // If isPrime[p] is not
            // changed, then it
            // is a prime
            if (isPrime[p] == true) {
                // Update all multiples of p
                for (let i = p * 2; i <= n; i += p)
                    isPrime[i] = false;
            }
        }
    }
 
    // Returns true if n is
    // right-truncatable,
    // else false
    function rightTruPrime(n)
    {
 
        // Generating primes using Sieve
        let isPrime = new Array(n + 1).fill(false);
        sieveOfEratosthenes(n, isPrime);
 
        // Checking whether the number
        // remains prime when the last (right)
        // digit is successively removed
        while (n != 0) {
 
            if (isPrime[n])
                n = parseInt(n / 10);
            else
                return false;
        }
        return true;
    }
 
    // Driver program
    var n = 59399;
    if (rightTruPrime(n))
        document.write("Yes");
    else
        document.write("No");
 
// This code is contributed by shikhasingrajput
</script>


Output: 
 

Yes

Related Article:Left-Truncatable Prime
References: 
https://en.wikipedia.org/wiki/Truncatable_prime
If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments