A Right-truncatable prime is a prime which remains prime when the last (“right”) digit is successively removed. For example, 239 is right-truncatable prime since 239, 23 and 2 are all prime. There are 83 right-truncatable primes.
The task is to check whether the given number (N > 0) is right-truncatable prime or not.
Examples:
Input: 239 Output: Yes Input: 101 Output: No 101 is not right-truncatable prime because numbers formed are 101, 10 and 1. Here, 101 is prime but 10 and 1 are not prime.
The idea is to generate all the primes less than or equal to the given number N using Sieve of Eratosthenes. Once we have generated all such primes, then we check whether the number remains prime when the last (“right”) digit is successively removed.
C++
//C++ Program to check // whether a given number // is right-truncatable // prime or not. #include<bits/stdc++.h> using namespace std; // Generate all prime numbers less than n. bool sieveOfEratosthenes( int n, bool isPrime[]) { // Initialize all entries // of boolean array as // true. A value in // isPrime[i] will finally // be false if i is Not a // prime, else true // bool isPrime[n+1]; isPrime[0] = isPrime[1] = false ; for ( int i = 2; i <= n; i++) isPrime[i] = true ; for ( int p = 2; p * p<=n; p++) { // If isPrime[p] is not changed, then it is // a prime if (isPrime[p] == true ) { // Update all multiples of p for ( int i = p * 2; i <= n; i += p) isPrime[i] = false ; } } } // Returns true if n is right-truncatable, // else false bool rightTruPrime( int n) { // Generating primes using Sieve bool isPrime[n+1]; sieveOfEratosthenes(n, isPrime); // Checking whether the number remains // prime when the last ("right") // digit is successively removed while (n) { if (isPrime[n]) n = n / 10; else return false ; } return true ; } // Driver program int main() { int n = 59399; if (rightTruPrime(n)) cout << "Yes" << endl; else cout << "No" << endl; return 0; } |
Java
// Java code to check // right-truncatable // prime or not. import java.io.*; class GFG { // Generate all prime // numbers less than n. static void sieveOfEratosthenes ( int n, boolean isPrime[]) { // Initialize all entries of // boolean array as true. A // value in isPrime[i] will // finally be false if i is // Not a prime, else true // bool isPrime[n+1]; isPrime[ 0 ] = isPrime[ 1 ] = false ; for ( int i = 2 ; i <= n; i++) isPrime[i] = true ; for ( int p= 2 ; p*p<=n; p++) { // If isPrime[p] is not // changed, then it // is a prime if (isPrime[p] == true ) { // Update all multiples of p for ( int i = p * 2 ; i <= n; i += p) isPrime[i] = false ; } } } // Returns true if n is // right-truncatable, // else false static boolean rightTruPrime( int n) { // Generating primes using Sieve boolean isPrime[] = new boolean [n+ 1 ]; sieveOfEratosthenes(n, isPrime); // Checking whether the number // remains prime when the last (right) // digit is successively removed while (n != 0 ) { if (isPrime[n]) n = n / 10 ; else return false ; } return true ; } // Driver program public static void main(String args[]) { int n = 59399 ; if (rightTruPrime(n)) System.out.println( "Yes" ); else System.out.println( "No" ); } } /* This code is contributed by Nikita Tiwari.*/ |
Python3
# Python3 Program to check # whether a given number # is right-truncatable # prime or not. # Generate all prime numbers less than n. def sieveOfEratosthenes(n,isPrime) : # Initialize all entries # of boolean array as # true. A value in isPrime[i] # will finally be false if # i is Not a prime, else true # bool isPrime[n+1]; isPrime[ 0 ] = isPrime[ 1 ] = False for i in range ( 2 , n + 1 ) : isPrime[i] = True p = 2 while (p * p < = n) : # If isPrime[p] is not changed, then it is # a prime if (isPrime[p] = = True ) : # Update all multiples of p i = p * 2 while (i < = n) : isPrime[i] = False i = i + p p = p + 1 # Returns true if n is right-truncatable, else false def rightTruPrime(n) : # Generating primes using Sieve isPrime = [ None ] * (n + 1 ) sieveOfEratosthenes(n, isPrime) # Checking whether the # number remains prime # when the last ("right") # digit is successively # removed while (n ! = 0 ) : if (isPrime[n]) : n = n / / 10 else : return False return True # Driven program n = 59399 if (rightTruPrime(n)) : print ( "Yes" ) else : print ( "No" ) # This code is contributed by Nikita Tiwari. |
C#
// C# code to check right- // truncatable prime or not using System; class GFG { // Generate all prime // numbers less than n. static void sieveOfEratosthenes( int n, bool [] isPrime) { // Initialize all entries of // boolean array as true. A // value in isPrime[i] will // finally be false if i is // Not a prime, else true // bool isPrime[n+1]; isPrime[0] = isPrime[1] = false ; for ( int i = 2; i <= n; i++) isPrime[i] = true ; for ( int p = 2; p * p <= n; p++) { // If isPrime[p] is not // changed, then it // is a prime if (isPrime[p] == true ) { // Update all multiples of p for ( int i = p * 2; i <= n; i += p) isPrime[i] = false ; } } } // Returns true if n is right- // truncatable, else false static bool rightTruPrime( int n) { // Generating primes using Sieve bool [] isPrime = new bool [n + 1]; sieveOfEratosthenes(n, isPrime); // Checking whether the number // remains prime when last (right) // digit is successively removed while (n != 0) { if (isPrime[n]) n = n / 10; else return false ; } return true ; } // Driven program public static void Main() { int n = 59399; if (rightTruPrime(n)) Console.WriteLine( "Yes" ); else Console.WriteLine( "No" ); } } // This code is contributed by Anant Agarwal |
PHP
<?php // Program to check whether a given number // is right-truncatable prime or not. // Generate all prime numbers less than n. function sieveOfEratosthenes( $n , & $isPrime ) { // Initialize all entries of boolean // array as true. A value in isPrime[i] // will finally be false if i is Not a // prime, else true bool isPrime[n+1]; $isPrime [0] = $isPrime [1] = false; for ( $p = 2; $p * $p <= $n ; $p ++) { // If isPrime[p] is not changed, // then it is a prime if ( $isPrime [ $p ] == true) { // Update all multiples of p for ( $i = $p * 2; $i <= $n ; $i += $p ) $isPrime [ $i ] = false; } } } // Returns true if n is right-truncatable, // else false function rightTruPrime( $n ) { // Generating primes using Sieve $isPrime = array_fill (0, $n + 1, true); sieveOfEratosthenes( $n , $isPrime ); // Checking whether the number remains // prime when the last ("right") // digit is successively removed while ( $n ) { if ( $isPrime [ $n ]) $n = (int)( $n / 10); else return false; } return true; } // Driver Code $n = 59399; if (rightTruPrime( $n )) echo "Yes\n" ; else echo "No\n" ; // This code is contributed by mits ?> |
Javascript
<script> // javascript code to check // right-truncatable // prime or not. // Generate all prime // numbers less than n. function sieveOfEratosthenes(n, isPrime) { // Initialize all entries of // boolean array as true. A // value in isPrime[i] will // finally be false if i is // Not a prime, else true // bool isPrime[n+1]; isPrime[0] = isPrime[1] = false ; for (let i = 2; i <= n; i++) isPrime[i] = true ; for (let p = 2; p * p <= n; p++) { // If isPrime[p] is not // changed, then it // is a prime if (isPrime[p] == true ) { // Update all multiples of p for (let i = p * 2; i <= n; i += p) isPrime[i] = false ; } } } // Returns true if n is // right-truncatable, // else false function rightTruPrime(n) { // Generating primes using Sieve let isPrime = new Array(n + 1).fill( false ); sieveOfEratosthenes(n, isPrime); // Checking whether the number // remains prime when the last (right) // digit is successively removed while (n != 0) { if (isPrime[n]) n = parseInt(n / 10); else return false ; } return true ; } // Driver program var n = 59399; if (rightTruPrime(n)) document.write( "Yes" ); else document.write( "No" ); // This code is contributed by shikhasingrajput </script> |
Output:
Yes
Related Article:Left-Truncatable Prime
References:
https://en.wikipedia.org/wiki/Truncatable_prime
If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!