Given string str of length N and an array arr[] of integers, for array element arr[i](1-based indexing), reverse the substring in indices [arr[i], N – arr[i] + 1]. The task is to print the string after every reversal.
Examples:
Input: str = “neveropen”, arr[] = {2}
Output: GkeeGrofskees
Explanation:
For first element of the array is 2:
Reverse the substring (2, 12). Now the updated string is “GkeeGrofskees”.Input: str = “abcdef”, arr[] = {1, 2, 3}
Output: fbdcea
Explanation:
For first element of the array is 1:
Reverse the substring (1, 6). Now the updated string is “fedcba”.
For second element of the array is 2:
Reverse the substring (2, 5). Now the updated string is “fbcdea”.
For third element of the array is 3:
Reverse the substring (3, 4). Now the updated string is “fbdcea”.
Naive Approach: The simplest approach is to traverse the given array and for each array element arr[i] reverse the substring {s[arr[i]], … s[N – arr[i] + 1]} and print the resultant string obtained after very update.
Time Complexity: O(N * K), where N is the length of the string and K is the maximum length of the substring reversed.
Auxiliary Space: O(1)
Efficient Approach: The above approach can be optimized by keeping the track of the number of times any character at an index has been reversed. If the count of reversal is even, then the character will come back to its original place, so there will be no change and if the count of reversal is odd, then the character has to be swapped. Below are the steps:
- Initialize an array count[] to store the number of reversals at any index of the string.
- Traverse the given array arr[] and increment the count of indices count[arr[i]] by 1.
- Now, traverse the array count[] over the range [1, N/2] using the variable i and do the following:
- Update the element at the current index as the sum of the current and previous index.
- Now, if current element count[i] is odd, then swap str[i] and str[N – i + 1].
- Print the string after the above steps.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <iostream> using namespace std; // Function to perform the reversal // operation on the given string string modifyString( int A[], string str, int K) { // Size of string int N = str.size(); // Stores the count of indices int count[N + 1] = { 0 }; // Count the positions where // reversals will begin for ( int i = 0; i < K; i++) { count[A[i]]++; } for ( int i = 1; i <= N / 2; i++) { // Store the count of reversals // beginning at position i count[i] = count[i] + count[i - 1]; // Check if the count[i] is // odd the swap the character if (count[i] & 1) { swap(str[i - 1], str[N - i]); } } // Return the updated string return str; } // Driver Code int main() { // Given string str string str = "abcdef" ; // Given array of reversing index int arr[] = { 1, 2, 3 }; int K = sizeof (arr) / sizeof (arr[0]); // Function Call cout << modifyString(arr, str, K); return 0; } |
Java
// Java program for the above approach import java.util.*; class GFG{ // Function to perform the reversal // operation on the given String static String modifyString( int A[], String str, int K) { // Size of String int N = str.length(); // Stores the count of indices int count[] = new int [N + 1 ]; // Count the positions where // reversals will begin for ( int i = 0 ; i < K; i++) { count[A[i]]++; } for ( int i = 1 ; i <= N / 2 ; i++) { // Store the count of reversals // beginning at position i count[i] = count[i] + count[i - 1 ]; // Check if the count[i] is // odd the swap the character if ((count[i] & 1 ) > 0 ) { str = swap(str, i - 1 , N - i); } } // Return the updated String return str; } // Swap char of a string static String swap(String str, int i, int j) { char ch[] = str.toCharArray(); char temp = ch[i]; ch[i] = ch[j]; ch[j] = temp; return String.valueOf(ch); } // Driver Code public static void main(String[] args) { // Given String str String str = "abcdef" ; // Given array of reversing index int arr[] = { 1 , 2 , 3 }; int K = arr.length; // Function Call System.out.print(modifyString(arr, str, K)); } } // This code is contributed by Amit Katiyar |
Python3
# Python3 program for the above approach # Function to perform the reversal # operation on the given string def modifyString(A, str , K): # Size of string N = len ( str ) # Stores the count of indices count = [ 0 ] * (N + 1 ) # Count the positions where # reversals will begin for i in range (K): count[A[i]] + = 1 for i in range ( 1 , N / / 2 + 1 ): # Store the count of reversals # beginning at position i count[i] = count[i] + count[i - 1 ] # Check if the count[i] is # odd the swap the character if (count[i] & 1 ): str [i - 1 ], str [N - i] = str [N - i], str [i - 1 ] # Return the updated string return "".join( str ) # Driver Code if __name__ = = '__main__' : # Given str str1 = "abcdef" str = [i for i in str1] # Given array of reversing index arr = [ 1 , 2 , 3 ] K = len (arr) # Function Call print (modifyString(arr, str , K)) # This code is contributed by mohit kumar 29 |
C#
// C# program for the above approach using System; class GFG{ // Function to perform the reversal // operation on the given String static String modifyString( int []A, String str, int K) { // Size of String int N = str.Length; // Stores the count of indices int []count = new int [N + 1]; // Count the positions where // reversals will begin for ( int i = 0; i < K; i++) { count[A[i]]++; } for ( int i = 1; i <= N / 2; i++) { // Store the count of reversals // beginning at position i count[i] = count[i] + count[i - 1]; // Check if the count[i] is // odd the swap the character if ((count[i] & 1) > 0) { str = swap(str, i - 1, N - i); } } // Return the updated String return str; } // Swap char of a string static String swap(String str, int i, int j) { char []ch = str.ToCharArray(); char temp = ch[i]; ch[i] = ch[j]; ch[j] = temp; return String.Join( "" , ch); } // Driver Code public static void Main(String[] args) { // Given String str String str = "abcdef" ; // Given array of reversing index int []arr = { 1, 2, 3 }; int K = arr.Length; // Function Call Console.Write(modifyString(arr, str, K)); } } // This code is contributed by Amit Katiyar |
Javascript
<script> // JavaScript program for the above approach // Function to perform the reversal // operation on the given String function modifyString(A, str, K) { // Size of String str = str.split( "" ) let N = str.length; // Stores the count of indices let count = new Array(N + 1).fill(0); // Count the positions where // reversals will begin for (let i = 0; i < K; i++) { count[A[i]] += 1; } for (let i = 1; i <= N / 2; i++) { // Store the count of reversals // beginning at position i count[i] = count[i] + count[i - 1]; // Check if the count[i] is // odd the swap the character if (count[i] & 1) { let temp = str[i - 1]; str[i - 1] = str[N - i]; str[N - i] = temp } } // Return the updated String return str.join( "" ); } // Driver Code // Given String str let str = "abcdef" ; // Given array of reversing index let arr = [1, 2, 3]; let K = arr.length; // Function Call document.write(modifyString(arr, str, K)); // This code is contributed by gfgking </script> |
fbdcea
Time Complexity: O(N + K), where N is the length of the string and K is the maximum length of the substring reversed.
Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!