Given an array Q[] of size N – 1 such that each Q[i] = P[i + 1] – P[i] where P[] is the permutation of the first N natural numbers, the task is to find this permutation. If no valid permutation P[] can be found then print -1.
Examples:
Input: Q[] = {-2, 1}
Output: 3 1 2Input: Q[] = {1, 1, 1, 1}
Output: 1 2 3 4 5
Approach: This is a mathematical algorithmic question. Lets denote P[i] = x. Therefore P[i + 1] = P[i] + (P[i + 1] – P[i]) = x + Q[i] (Since Q[i] = P[i + 1] – P[i]).
Therefore, P[i + 2]= P[i] + (P[i + 1] – P[i]) + (P[i + 2] – P[i + 1]) = x + Q[i] + Q[i + 1]. Observe, the pattern forming here. P is nothing but [x, x + Q[1], x + Q[1] + Q[2] + … + x + Q[1] + Q[2] + … + Q[n – 1]] where x = P[i] which is still unknown.
Lets have a permutation P’ where P'[i] = P[i] – x. Therefore, P’ = [0, Q[1], Q[1] + Q[2], Q[1] + Q[2] + Q[3], …, Q[1] + Q[2] + … + Q[n – 1]].
To find x, lets find the smallest element in P’. Let it be P'[k]. Therefore, x = 1 – P'[k]. This is because, the original permutation P has integers from 1 to n and so 1 can be the minimum element in P. After finding x, add x to each P’ to get the original permutation P.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to find the required permutation void findPerm( int Q[], int n) { int minval = 0, qsum = 0; for ( int i = 0; i < n - 1; i++) { // Each element in P' is like a // cumulative sum in Q qsum += Q[i]; // minval is the minimum // value in P' if (qsum < minval) minval = qsum; } vector< int > P(n); P[0] = 1 - minval; // To check if each entry in P // is from the range [1, n] bool permFound = true ; for ( int i = 0; i < n - 1; i++) { P[i + 1] = P[i] + Q[i]; // Invalid permutation if (P[i + 1] > n || P[i + 1] < 1) { permFound = false ; break ; } } // If a valid permutation exists if (permFound) { // Print the permutation for ( int i = 0; i < n; i++) { cout << P[i] << " " ; } } else { // No valid permutation cout << -1; } } // Driver code int main() { int Q[] = { -2, 1 }; int n = 1 + ( sizeof (Q) / sizeof ( int )); findPerm(Q, n); return 0; } |
Java
// Java implementation of the approach class GFG { // Function to find the required permutation static void findPerm( int Q[], int n) { int minval = 0 , qsum = 0 ; for ( int i = 0 ; i < n - 1 ; i++) { // Each element in P' is like a // cumulative sum in Q qsum += Q[i]; // minval is the minimum // value in P' if (qsum < minval) minval = qsum; } int []P = new int [n]; P[ 0 ] = 1 - minval; // To check if each entry in P // is from the range [1, n] boolean permFound = true ; for ( int i = 0 ; i < n - 1 ; i++) { P[i + 1 ] = P[i] + Q[i]; // Invalid permutation if (P[i + 1 ] > n || P[i + 1 ] < 1 ) { permFound = false ; break ; } } // If a valid permutation exists if (permFound) { // Print the permutation for ( int i = 0 ; i < n; i++) { System.out.print(P[i]+ " " ); } } else { // No valid permutation System.out.print(- 1 ); } } // Driver code public static void main(String[] args) { int Q[] = { - 2 , 1 }; int n = 1 + Q.length; findPerm(Q, n); } } // This code is contributed by 29AjayKumar |
Python3
# Python3 implementation of the approach # Function to find the required permutation def findPerm(Q, n) : minval = 0 ; qsum = 0 ; for i in range (n - 1 ) : # Each element in P' is like a # cumulative sum in Q qsum + = Q[i]; # minval is the minimum # value in P' if (qsum < minval) : minval = qsum; P = [ 0 ] * n; P[ 0 ] = 1 - minval; # To check if each entry in P # is from the range [1, n] permFound = True ; for i in range (n - 1 ) : P[i + 1 ] = P[i] + Q[i]; # Invalid permutation if (P[i + 1 ] > n or P[i + 1 ] < 1 ) : permFound = False ; break ; # If a valid permutation exists if (permFound) : # Print the permutation for i in range (n) : print (P[i],end = " " ); else : # No valid permutation print ( - 1 ); # Driver code if __name__ = = "__main__" : Q = [ - 2 , 1 ]; n = 1 + len (Q) ; findPerm(Q, n); # This code is contributed by AnkitRai01 |
C#
// C# implementation of the approach using System; using System.Collections.Generic; class GFG { // Function to find the required permutation static void findPerm( int []Q, int n) { int minval = 0, qsum = 0; for ( int i = 0; i < n - 1; i++) { // Each element in P' is like a // cumulative sum in Q qsum += Q[i]; // minval is the minimum // value in P' if (qsum < minval) minval = qsum; } int []P = new int [n]; P[0] = 1 - minval; // To check if each entry in P // is from the range [1, n] bool permFound = true ; for ( int i = 0; i < n - 1; i++) { P[i + 1] = P[i] + Q[i]; // Invalid permutation if (P[i + 1] > n || P[i + 1] < 1) { permFound = false ; break ; } } // If a valid permutation exists if (permFound) { // Print the permutation for ( int i = 0; i < n; i++) { Console.Write(P[i]+ " " ); } } else { // No valid permutation Console.Write(-1); } } // Driver code public static void Main(String[] args) { int []Q = { -2, 1 }; int n = 1 + Q.Length; findPerm(Q, n); } } // This code is contributed by PrinciRaj1992 |
Javascript
<script> // Javascript implementation of the approach // Function to find the required permutation function findPerm(Q, n) { var minval = 0, qsum = 0; for ( var i = 0; i < n - 1; i++) { // Each element in P' is like a // cumulative sum in Q qsum += Q[i]; // minval is the minimum // value in P' if (qsum < minval) minval = qsum; } var P = Array(n); P[0] = 1 - minval; // To check if each entry in P // is from the range [1, n] var permFound = true ; for ( var i = 0; i < n - 1; i++) { P[i + 1] = P[i] + Q[i]; // Invalid permutation if (P[i + 1] > n || P[i + 1] < 1) { permFound = false ; break ; } } // If a valid permutation exists if (permFound) { // Print the permutation for ( var i = 0; i < n; i++) { document.write( P[i] + " " ); } } else { // No valid permutation document.write( -1); } } // Driver code var Q = [ -2, 1 ]; var n = 1 + Q.length; findPerm(Q, n); // This code is contributed by famously </script> |
3 1 2
Time Complexity: O(n)
Auxiliary Space: O(n)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!