Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIRestore a permutation from the given helper array

Restore a permutation from the given helper array

Given an array Q[] of size N – 1 such that each Q[i] = P[i + 1] – P[i] where P[] is the permutation of the first N natural numbers, the task is to find this permutation. If no valid permutation P[] can be found then print -1.

Examples: 

Input: Q[] = {-2, 1} 
Output: 3 1 2

Input: Q[] = {1, 1, 1, 1} 
Output: 1 2 3 4 5  

Approach: This is a mathematical algorithmic question. Lets denote P[i] = x. Therefore P[i + 1] = P[i] + (P[i + 1] – P[i]) = x + Q[i] (Since Q[i] = P[i + 1] – P[i]). 
Therefore, P[i + 2]= P[i] + (P[i + 1] – P[i]) + (P[i + 2] – P[i + 1]) = x + Q[i] + Q[i + 1]. Observe, the pattern forming here. P is nothing but [x, x + Q[1], x + Q[1] + Q[2] + … + x + Q[1] + Q[2] + … + Q[n – 1]] where x = P[i] which is still unknown.
Lets have a permutation P’ where P'[i] = P[i] – x. Therefore, P’ = [0, Q[1], Q[1] + Q[2], Q[1] + Q[2] + Q[3], …, Q[1] + Q[2] + … + Q[n – 1]].

To find x, lets find the smallest element in P’. Let it be P'[k]. Therefore, x = 1 – P'[k]. This is because, the original permutation P has integers from 1 to n and so 1 can be the minimum element in P. After finding x, add x to each P’ to get the original permutation P.

Below is the implementation of the above approach:  

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the required permutation
void findPerm(int Q[], int n)
{
 
    int minval = 0, qsum = 0;
    for (int i = 0; i < n - 1; i++) {
 
        // Each element in P' is like a
        // cumulative sum in Q
        qsum += Q[i];
 
        // minval is the minimum
        // value in P'
        if (qsum < minval)
            minval = qsum;
    }
    vector<int> P(n);
    P[0] = 1 - minval;
 
    // To check if each entry in P
    // is from the range [1, n]
    bool permFound = true;
    for (int i = 0; i < n - 1; i++) {
        P[i + 1] = P[i] + Q[i];
 
        // Invalid permutation
        if (P[i + 1] > n || P[i + 1] < 1) {
            permFound = false;
            break;
        }
    }
 
    // If a valid permutation exists
    if (permFound) {
 
        // Print the permutation
        for (int i = 0; i < n; i++) {
            cout << P[i] << " ";
        }
    }
    else {
 
        // No valid permutation
        cout << -1;
    }
}
 
// Driver code
int main()
{
    int Q[] = { -2, 1 };
    int n = 1 + (sizeof(Q) / sizeof(int));
 
    findPerm(Q, n);
 
    return 0;
}


Java




// Java implementation of the approach
 
class GFG
{
 
// Function to find the required permutation
static void findPerm(int Q[], int n)
{
 
    int minval = 0, qsum = 0;
    for (int i = 0; i < n - 1; i++)
    {
 
        // Each element in P' is like a
        // cumulative sum in Q
        qsum += Q[i];
 
        // minval is the minimum
        // value in P'
        if (qsum < minval)
            minval = qsum;
    }
    int []P = new int[n];
    P[0] = 1 - minval;
 
    // To check if each entry in P
    // is from the range [1, n]
    boolean permFound = true;
    for (int i = 0; i < n - 1; i++)
    {
        P[i + 1] = P[i] + Q[i];
 
        // Invalid permutation
        if (P[i + 1] > n || P[i + 1] < 1)
        {
            permFound = false;
            break;
        }
    }
 
    // If a valid permutation exists
    if (permFound)
    {
 
        // Print the permutation
        for (int i = 0; i < n; i++)
        {
            System.out.print(P[i]+ " ");
        }
    }
    else
    {
 
        // No valid permutation
        System.out.print(-1);
    }
}
 
// Driver code
public static void main(String[] args)
{
    int Q[] = { -2, 1 };
    int n = 1 + Q.length;
 
    findPerm(Q, n);
 
}
}
 
// This code is contributed by 29AjayKumar


Python3




# Python3 implementation of the approach
 
# Function to find the required permutation
def findPerm(Q, n) :
 
    minval = 0; qsum = 0;
    for i in range(n - 1) :
 
        # Each element in P' is like a
        # cumulative sum in Q
        qsum += Q[i];
 
        # minval is the minimum
        # value in P'
        if (qsum < minval) :
            minval = qsum;
 
    P = [0]*n;
    P[0] = 1 - minval;
 
    # To check if each entry in P
    # is from the range [1, n]
    permFound = True;
     
    for i in range(n - 1) :
        P[i + 1] = P[i] + Q[i];
 
        # Invalid permutation
        if (P[i + 1] > n or P[i + 1] < 1) :
            permFound = False;
            break;
 
    # If a valid permutation exists
    if (permFound) :
 
        # Print the permutation
        for i in range(n) :
            print(P[i],end=" ");
    else :
 
        # No valid permutation
        print(-1);
 
# Driver code
if __name__ == "__main__" :
 
    Q = [ -2, 1 ];
    n = 1 + len(Q) ;
 
    findPerm(Q, n);
     
# This code is contributed by AnkitRai01


C#




// C# implementation of the approach
using System;
using System.Collections.Generic;
 
class GFG
{
 
// Function to find the required permutation
static void findPerm(int []Q, int n)
{
 
    int minval = 0, qsum = 0;
    for (int i = 0; i < n - 1; i++)
    {
 
        // Each element in P' is like a
        // cumulative sum in Q
        qsum += Q[i];
 
        // minval is the minimum
        // value in P'
        if (qsum < minval)
            minval = qsum;
    }
    int []P = new int[n];
    P[0] = 1 - minval;
 
    // To check if each entry in P
    // is from the range [1, n]
    bool permFound = true;
    for (int i = 0; i < n - 1; i++)
    {
        P[i + 1] = P[i] + Q[i];
 
        // Invalid permutation
        if (P[i + 1] > n || P[i + 1] < 1)
        {
            permFound = false;
            break;
        }
    }
 
    // If a valid permutation exists
    if (permFound)
    {
 
        // Print the permutation
        for (int i = 0; i < n; i++)
        {
            Console.Write(P[i]+ " ");
        }
    }
    else
    {
 
        // No valid permutation
        Console.Write(-1);
    }
}
 
// Driver code
public static void Main(String[] args)
{
    int []Q = { -2, 1 };
    int n = 1 + Q.Length;
 
    findPerm(Q, n);
}
}
 
// This code is contributed by PrinciRaj1992


Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to find the required permutation
function findPerm(Q, n)
{
    var minval = 0, qsum = 0;
    for(var i = 0; i < n - 1; i++)
    {
         
        // Each element in P' is like a
        // cumulative sum in Q
        qsum += Q[i];
 
        // minval is the minimum
        // value in P'
        if (qsum < minval)
            minval = qsum;
    }
    var P = Array(n);
    P[0] = 1 - minval;
 
    // To check if each entry in P
    // is from the range [1, n]
    var permFound = true;
    for(var i = 0; i < n - 1; i++)
    {
        P[i + 1] = P[i] + Q[i];
 
        // Invalid permutation
        if (P[i + 1] > n || P[i + 1] < 1)
        {
            permFound = false;
            break;
        }
    }
 
    // If a valid permutation exists
    if (permFound)
    {
         
        // Print the permutation
        for(var i = 0; i < n; i++)
        {
            document.write( P[i] + " ");
        }
    }
    else
    {
         
        // No valid permutation
        document.write( -1);
    }
}
 
// Driver code
var Q = [ -2, 1 ];
var n = 1 + Q.length;
 
findPerm(Q, n);
 
// This code is contributed by famously
 
</script>


Output: 

3 1 2

 

Time Complexity: O(n)

Auxiliary Space: O(n)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments