Tuesday, November 19, 2024
Google search engine
HomeData Modelling & AIRepresent n as the sum of exactly k powers of two |...

Represent n as the sum of exactly k powers of two | Set 2

Given two integers n and k, the task is to find whether it is possible to represent n as the sum of exactly k powers of 2. If possible then print k positive integers such that they are powers of 2 and their sum is exactly equal to n else print Impossible.

Examples: 

Input: n = 9, k = 4 
Output: 1 2 2 4 
1, 2 and 4 are all powers of 2 and 1 + 2 + 2 + 4 = 9.

Input: n = 3, k = 7 
Output: Impossible 
It is impossible since 3 cannot be represented as sum of 7 numbers which are powers of 2. 

We have discussed one approach to solve this problem in Find k numbers which are powers of 2 and have sum N. In this post, a different approach is being discussed.

Approach: 

  • Create an array arr[] of size k with all elements initialized to 1 and create a variable sum = k.
  • Now starting from the last element of arr[] 
    • If sum + arr[i] ? n then update sum = sum + arr[i] and arr[i] = arr[i] * 2.
    • Else skip the current element.
  • If sum = n then the contents of arr[] are the required elements.
  • Else it is impossible to represent n as exactly k powers of 2.

Below is the implementation of the above approach: 

C++




// C++ implementation of the above approach
#include <iostream>
using namespace std;
 
// Function to print k numbers which are powers of two
// and whose sum is equal to n
void FindAllElements(int n, int k)
{
    // Initialising the sum with k
    int sum = k;
 
    // Initialising an array A with k elements
    // and filling all elements with 1
    int A[k];
    fill(A, A + k, 1);
 
    for (int i = k - 1; i >= 0; --i) {
 
        // Iterating A[] from k-1 to 0
        while (sum + A[i] <= n) {
 
            // Update sum and A[i]
            // till sum + A[i] is less than equal to n
            sum += A[i];
            A[i] *= 2;
        }
    }
 
    // Impossible to find the combination
    if (sum != n) {
        cout << "Impossible";
    }
 
    // Possible solution is stored in A[]
    else {
        for (int i = 0; i < k; ++i)
            cout << A[i] << ' ';
    }
}
 
// Driver code
int main()
{
    int n = 12;
    int k = 6;
 
    FindAllElements(n, k);
 
    return 0;
}


Java




// Java implementation of the above approach
import java.util.Arrays;
 
public class GfG {
     
    // Function to print k numbers which are powers of two
    // and whose sum is equal to n
    public static void FindAllElements(int n, int k)
    {
        // Initialising the sum with k
        int sum = k;
       
        // Initialising an array A with k elements
        // and filling all elements with 1
        int[] A = new int[k];
        Arrays.fill(A, 0, k, 1);
         
        for (int i = k - 1; i >= 0; --i) {
       
            // Iterating A[] from k-1 to 0
            while (sum + A[i] <= n) {
       
                // Update sum and A[i]
                // till sum + A[i] is less than equal to n
                sum += A[i];
                A[i] *= 2;
            }
        }
       
        // Impossible to find the combination
        if (sum != n) {
            System.out.print("Impossible");
        }
       
        // Possible solution is stored in A[]
        else {
            for (int i = 0; i < k; ++i)
                System.out.print(A[i] + " ");
        }
    }
     
    public static void main(String []args){
         
        int n = 12;
        int k = 6;
       
        FindAllElements(n, k);
    }
}
   
// This code is contributed by Rituraj Jain


Python3




# Python 3 implementation of the above approach
 
# Function to print k numbers which are
# powers of two and whose sum is equal to n
def FindAllElements(n, k):
     
    # Initialising the sum with k
    sum = k
 
    # Initialising an array A with k elements
    # and filling all elements with 1
    A = [1 for i in range(k)]
    i = k - 1
    while(i >= 0):
         
        # Iterating A[] from k-1 to 0
        while (sum + A[i] <= n):
             
            # Update sum and A[i] till
            # sum + A[i] is less than equal to n
            sum += A[i]
            A[i] *= 2
        i -= 1
     
    # Impossible to find the combination
    if (sum != n):
        print("Impossible")
 
    # Possible solution is stored in A[]
    else:
        for i in range(0, k, 1):
            print(A[i], end = ' ')
 
# Driver code
if __name__ == '__main__':
    n = 12
    k = 6
 
    FindAllElements(n, k)
 
# This code is contributed by
# Surendra_Gangwar


C#




// C# implementation of the above approach
using System;
 
class GfG
{
     
    // Function to print k numbers
    // which are powers of two
    // and whose sum is equal to n
    public static void FindAllElements(int n, int k)
    {
        // Initialising the sum with k
        int sum = k;
         
        // Initialising an array A with k elements
        // and filling all elements with 1
        int[] A = new int[k];
        for(int i = 0; i < k; i++)
            A[i] = 1;
         
        for (int i = k - 1; i >= 0; --i)
        {
         
            // Iterating A[] from k-1 to 0
            while (sum + A[i] <= n)
            {
         
                // Update sum and A[i]
                // till sum + A[i] is less than equal to n
                sum += A[i];
                A[i] *= 2;
            }
        }
         
        // Impossible to find the combination
        if (sum != n)
        {
            Console.Write("Impossible");
        }
         
        // Possible solution is stored in A[]
        else
        {
            for (int i = 0; i < k; ++i)
                Console.Write(A[i] + " ");
        }
    }
     
    // Driver code
    public static void Main(String []args)
    {
         
        int n = 12;
        int k = 6;
         
        FindAllElements(n, k);
    }
}
 
// This code contributed by Rajput-Ji


PHP




<?php
// PHP implementation of the above approach
 
// Function to print k numbers which are
// powers of two and whose sum is equal to n
function FindAllElements($n, $k)
{
    // Initialising the sum with k
    $sum = $k;
 
    // Initialising an array A with k elements
    // and filling all elements with 1
    $A = array_fill(0, $k, 1) ;
 
 
    for ($i = $k - 1; $i >= 0; --$i)
    {
 
        // Iterating A[] from k-1 to 0
        while ($sum + $A[$i] <= $n)
        {
 
            // Update sum and A[i] till 
            // sum + A[i] is less than equal to n
            $sum += $A[$i];
            $A[$i] *= 2;
        }
    }
 
    // Impossible to find the combination
    if ($sum != $n)
    {
        echo"Impossible";
    }
 
    // Possible solution is stored in A[]
    else
    {
        for ($i = 0; $i < $k; ++$i)
            echo $A[$i], ' ';
    }
}
 
// Driver code
$n = 12;
$k = 6;
 
FindAllElements($n, $k);
 
// This code is contributed by Ryuga
?>


Javascript




<script>
 
// Javascript implementation of the above approach
 
     
// Function to print k numbers which are powers of two
// and whose sum is equal to n
function FindAllElements( n, k)
{
    // Initialising the sum with k
    let sum = k;
         
    // Initialising an array A with k elements
    // and filling all elements with 1
    let A = new Array(k).fill(1);
     
         
    for (let i = k - 1; i >= 0; --i) {
         
        // Iterating A[] from k-1 to 0
        while (sum + A[i] <= n) {
         
            // Update sum and A[i]
            // till sum + A[i] is less than equal to n
            sum += A[i];
            A[i] *= 2;
        }
    }
         
    // Impossible to find the combination
    if (sum != n) {
        document.write("Impossible");
    }
         
    // Possible solution is stored in A[]
    else {
        for (let i = 0; i < k; ++i)
            document.write(A[i] + " ");
    }
}
     
 
// Driver Code
 
let n = 12;
let k = 6;
         
FindAllElements(n, k);
 
</script>


Output

1 1 1 1 4 4 

Complexity Analysis:

  • Time Complexity: O(k*log2(n-k))
  • Auxiliary Space: O(k), since k extra space has been taken.
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments