Thursday, October 23, 2025
HomeLanguagesReplacing Pandas or Numpy Nan with a None to use with MysqlDB

Replacing Pandas or Numpy Nan with a None to use with MysqlDB

The widely used relational database management system is known as MysqlDB. The MysqlDB doesn’t understand and accept the value of ‘Nan’, thus there is a need to convert the ‘Nan’ value coming from Pandas or Numpy to ‘None’. In this article, we will see how we can replace Pandas or Numpy ‘Nan’ with a ‘None’.

Replacing NaN with None in Pandas

Example 1: The data frame, for which ‘Nan’ is to be replaced with ‘None’, is as follows:

Screenshot-2023-09-18-185354The provided code uses the Pandas library to replace ‘NaN’ values in a DataFrame df with ‘None’. It does so by using the replace() method with a dictionary mapping where keys (in this case, ‘np.nan’) are replaced by their corresponding values (in this case, ‘None’). The resulting DataFrame ‘replaced_df’ contains ‘None’ in place of ‘NaN’ values.

Python3




import pandas as pd
import numpy as np
df = pd.DataFrame({'A': [1, np.nan,3], 'B': [np.nan, 5, 6], 'C': [7, 8, np.nan]})
replaced_df = df.replace({np.nan: None})
print(replaced_df)


Output:

Screenshot-2023-09-18-185142

Example 2: The data frame, for which ‘Nan’ is to be replaced with ‘None’, is as follows:

Screenshot-2023-09-28-at-31120-PM

The provided code uses the Pandas library to replace ‘NaN’ values in a DataFrame df with ‘None’. It does so by using the replace() method with a dictionary mapping where keys (in this case, ‘np.nan’) are replaced by their corresponding values (in this case, ‘None’). The resulting DataFrame ‘replaced_df’ contains ‘None’ in place of ‘NaN’ values.

Python3




import pandas as pd
import numpy as np
df = pd.DataFrame({'A': [np.nan,6 ,3], 'B': [9, 5, np.nan], 'C': [np.nan, 8,5 ]})
print(df)
replaced_df = df.replace({np.nan: None})
print(replaced_df)


Output

Screenshot-2023-09-28-at-31138-PM

Replacing NaN with None in NumPy

Example 1: The data frame, for which ‘Nan’ is to be replaced with ‘None’ , is as follows:

[ 1. nan  3.  6.  7.]

It creates a NumPy array named temp, replaces the np.nan values with None using np.where, and then prints the modified temp array.

Python3




import numpy as np
temp = np.array([1, np.nan, 3,6,7])
print(arr)
temp = np.where(np.isnan(temp), None, temp)
print(temp)


Output:

[1.0 None 3.0 6.0 7.0]

Example 2: The data frame, for which ‘Nan’ is to be replaced with ‘None’ , is as follows:

[ 4.  5. nan nan  7.]

It creates a NumPy array named temp, replaces the np.nan values with None using np.where, and then prints the modified temp array.

Python




import numpy as np
temp = np.array([1, np.nan, 3,6,7])
print(arr)
temp = np.where(np.isnan(temp), None, temp)
print(temp)


Output

[4.0 5.0 None None 7.0]
Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32361 POSTS0 COMMENTS
Milvus
88 POSTS0 COMMENTS
Nango Kala
6728 POSTS0 COMMENTS
Nicole Veronica
11892 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11954 POSTS0 COMMENTS
Shaida Kate Naidoo
6852 POSTS0 COMMENTS
Ted Musemwa
7113 POSTS0 COMMENTS
Thapelo Manthata
6805 POSTS0 COMMENTS
Umr Jansen
6801 POSTS0 COMMENTS