Friday, October 3, 2025
HomeLanguagesReplacing missing values using Pandas in Python

Replacing missing values using Pandas in Python

Dataset is a collection of attributes and rows. Data set can have missing data that are represented by NA in Python and in this article, we are going to replace missing values in this article

We consider this data set: Dataset

data set

In our data contains missing values in quantity, price, bought, forenoon and afternoon columns,

So, We can replace missing values in the quantity column with mean, price column with a median, Bought column with standard deviation. Forenoon column with the minimum value in that column. Afternoon column with maximum value in that column.

Approach:

  • Import the module
  • Load data set
  • Fill in the missing values
  • Verify data set

Syntax:

Mean: data=data.fillna(data.mean())

Median: data=data.fillna(data.median())

Standard Deviation: data=data.fillna(data.std())

Min: data=data.fillna(data.min())

Max: data=data.fillna(data.max())

Below is the Implementation:

Python3




# importing pandas module
import pandas as pd
  
# loading data set
data = pd.read_csv('item.csv')
  
# display the data
print(data)


Output:

Then after we will proceed with Replacing missing values with mean, median, mode, standard deviation, min & max

Python3




# replacing missing values in quantity
# column with mean of that column
data['quantity'] = data['quantity'].fillna(data['quantity'].mean())
  
# replacing missing values in price column
# with median of that column
data['price'] = data['price'].fillna(data['price'].median())
  
# replacing missing values in bought column with
# standard deviation of that column
data['bought'] = data['bought'].fillna(data['bought'].std())
  
# replacing missing values in forenoon  column with
# minimum number of that column
data['forenoon'] = data['forenoon'].fillna(data['forenoon'].min())
  
# replacing missing values in afternoon  column with 
# maximum number of that column
data['afternoon'] = data['afternoon'].fillna(data['afternoon'].max())
  
print(Data)


Output:

RELATED ARTICLES

Most Popular

Dominic
32332 POSTS0 COMMENTS
Milvus
85 POSTS0 COMMENTS
Nango Kala
6703 POSTS0 COMMENTS
Nicole Veronica
11868 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11929 POSTS0 COMMENTS
Shaida Kate Naidoo
6819 POSTS0 COMMENTS
Ted Musemwa
7080 POSTS0 COMMENTS
Thapelo Manthata
6775 POSTS0 COMMENTS
Umr Jansen
6776 POSTS0 COMMENTS