Thursday, December 26, 2024
Google search engine
HomeLanguagesReplace NaN Values with Zeros in Pandas DataFrame

Replace NaN Values with Zeros in Pandas DataFrame

NaN stands for Not A Number and is one of the common ways to represent the missing value in the data. It is a special floating-point value and cannot be converted to any other type than float. NaN value is one of the major problems in Data Analysis. It is very essential to deal with NaN in order to get the desired results. 

Replace NaN Values with Zeros in Pandas DataFrame

 

Methods to Replace NaN Values with Zeros in Pandas DataFrame

In Python, there are two methods by which we can replace NaN values with zeros in Pandas dataframe. They are as follows:

Replace NaN Values with Zeros using Pandas fillna() 

The fillna() function is used to fill NA/NaN values using the specified method. Let us see a few examples for a better understanding.

Replace NaN values with zeros for a column using Pandas fillna() 

Syntax to replace NaN values with zeros of a single column in Pandas dataframe using fillna() function is as follows:

Syntax: df['DataFrame Column'] = df['DataFrame Column'].fillna(0)

Python3




# importing libraries
import pandas as pd
import numpy as np
 
nums = {'Set_of_Numbers': [2, 3, 5, 7, 11, 13,
                           np.nan, 19, 23, np.nan]}
 
# Create the dataframe
df = pd.DataFrame(nums, columns =['Set_of_Numbers'])
 
# Apply the function
df['Set_of_Numbers'] = df['Set_of_Numbers'].fillna(0)
 
# print the DataFrame
df


Output:

Replace NaN values with zero for a single column using Panda fillna()

fillna() to replace NaN for a single column

Replace NaN values with zeros for an entire column using Pandas fillna() 

Syntax to replace NaN values with zeros of the whole Pandas dataframe using fillna() function is as follows:

Syntax: df.fillna(0)

Python3




# importing libraries
import pandas as pd
import numpy as np
 
nums = {'Number_set_1': [0, 1, 1, 2, 3, 5, np.nan,
                         13, 21, np.nan],
       'Number_set_2': [3, 7, np.nan, 23, 31, 41,
                        np.nan, 59, 67, np.nan],
       'Number_set_3': [2, 3, 5, np.nan, 11, 13, 17,
                        19, 23, np.nan]}
 
# Create the dataframe
df = pd.DataFrame(nums)
 
# Apply the function
df = df.fillna(0)
 
# print the DataFrame
df


Output:

Replace NaN values with zero for whole dataframe using Panda fillna()

fillna() function  to replace NaN for the whole dataframe

Replace NaN Values with Zeros using NumPy replace() 

The dataframe.replace() function in Pandas can be defined as a simple method used to replace a string, regex, list, dictionary, etc. in a DataFrame.

Replace NaN values with zeros for a column using NumPy replace() 

Syntax to replace NaN values with zeros of a single column in Pandas dataframe using replace() function is as follows:

Syntax: df['DataFrame Column'] = df['DataFrame Column'].replace(np.nan, 0)

Python3




# importing libraries
import pandas as pd
import numpy as np
 
nums = {'Car Model Number': [223, np.nan, 237, 195, np.nan,
                             575, 110, 313, np.nan, 190, 143,
                             np.nan],
       'Engine Number': [4511, np.nan, 7570, 1565, 1450, 3786,
                         2995, 5345, 7777, 2323, 2785, 1120]}
 
# Create the dataframe
df = pd.DataFrame(nums, columns =['Car Model Number'])
 
# Apply the function
df['Car Model Number'] = df['Car Model Number'].replace(np.nan, 0)
 
# print the DataFrame
df


Output:

Replace NaN values with zero for a single column using NumPy replace()

replace() to replace NaN for a single column

Replace NaN values with zeros for an entire Dataframe using NumPy replace() 

Syntax to replace NaN values with zeros of the whole Pandas dataframe using replace() function is as follows:

Syntax: df.replace(np.nan, 0)

Python3




# importing libraries
import pandas as pd
import numpy as np
 
nums = {'Student Name': [ 'Shrek', 'Shivansh', 'Ishdeep'
                         'Siddharth', 'Nakul', 'Prakhar',
                         'Yash', 'Srikar', 'Kaustubh',
                         'Aditya''Manav', 'Dubey'],
        'Roll No.': [ 18229, 18232, np.nan, 18247, 18136,
                     np.nan, 18283, 18310, 18102, 18012,
                     18121, 18168],
        'Subject ID': [204, np.nan, 201, 105, np.nan, 204,
                       101, 101, np.nan, 165, 715, np.nan],
       'Grade Point': [9, np.nan, 7, np.nan, 8, 7, 9, 10,
                       np.nan, 9, 6, 8]}
 
# Create the dataframe
df = pd.DataFrame(nums)
 
# Apply the function
df = df.replace(np.nan, 0)
 
# print the DataFrame
df


Output:

Replace NaN values with zero for whole dataframe using NumPy replace()

replace() function  to replace NaN for the whole dataframe

RELATED ARTICLES

Most Popular

Recent Comments