Sunday, January 12, 2025
Google search engine
HomeData Modelling & AIReplace each node in given N-ary Tree with sum of all its...

Replace each node in given N-ary Tree with sum of all its subtrees

Given an N-ary tree. The task is to replace the values of each node with the sum of all its subtrees and the node itself

Examples

Input:            1
                   /  |  \
                2   3    4
             /  \     \
          5     6     7
Output: Initial Pre-order Traversal: 1 2 5 6 7 3 4
              Final Pre-order Traversal: 28 20 5 6 7 3 4 
Explanation: Value of each node is replaced by the sum of all its subtrees and the node itself. 

Input:            1
                   /  |  \
                4    2   3
              /  \           \
           7     6           5
Output: Initial Pre-order Traversal: 1 4 7 6  3 5
              Final Pre-order Traversal: 23 13 7 6 28 5

 

Approach: This problem can be solved by using Recursion. Follow the steps below to solve the given problem. 

  • The easiest way to do this problem is by using recursion.
  • Start with the base condition when the current node equals NULL then return 0, as it means it is the leaf node.
  • Otherwise, make a recursion call to all its child nodes by traversing using a loop and add the sum of all child nodes in it.
  • At last return the current node’s data.
  • In this way, all the node’s values will be replaced by the sum of all the subtrees and itself.

Below is the implementation of the above approach.              

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Class for the node of the tree
struct Node {
    int data;
 
    // List of children
    struct Node** children;
 
    int length;
 
    Node()
    {
        length = 0;
        data = 0;
    }
 
    Node(int n, int data_)
    {
        children = new Node*();
        length = n;
        data = data_;
    }
};
 
// Function to replace node with
// sum of its left subtree, right
// subtree and its sum
int sumReplacementNary(Node* node)
{
    if (node == NULL)
        return 0;
 
    // Total children count
    int total = node->length;
 
    // Taking sum of all the nodes
    for (int i = 0; i < total; i++)
        node->data += sumReplacementNary(node->children[i]);
 
    return node->data;
}
 
void preorderTraversal(Node* node)
{
    if (node == NULL)
        return;
 
    // Total children count
    int total = node->length;
 
    // Print the current node's data
    cout << node->data << " ";
 
    // All the children except the last
    for (int i = 0; i < total - 1; i++)
        preorderTraversal(node->children[i]);
 
    // Last child
    preorderTraversal(node->children[total - 1]);
}
 
// Driver code
int main()
{
 
    /* Create the following tree
                1
              / | \
             2  3  4
            / \  \
           5  6   7
    */
    int N = 3;
    Node* root = new Node(N, 1);
    root->children[0] = new Node(N, 2);
    root->children[1] = new Node(N, 3);
    root->children[2] = new Node(N, 4);
    root->children[0]->children[0] = new Node(N, 5);
    root->children[0]->children[1] = new Node(N, 6);
    root->children[0]->children[2] = new Node(N, 7);
 
    cout << "Initial Pre-order Traversal: ";
    preorderTraversal(root);
    cout << endl;
 
    cout << "Final Pre-order Traversal: ";
    sumReplacementNary(root);
    preorderTraversal(root);
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG{
 
  // Class for the node of the tree
  static class Node {
    int data;
 
    // List of children
    Node []children;
 
    int length;
 
    Node()
    {
      length = 0;
      data = 0;
    }
 
    Node(int n, int data_)
    {
      children = new Node[n];
      length = n;
      data = data_;
    }
  };
 
  // Function to replace node with
  // sum of its left subtree, right
  // subtree and its sum
  static int sumReplacementNary(Node node)
  {
    if (node == null)
      return 0;
 
    // Total children count
    int total = node.length;
 
    // Taking sum of all the nodes
    for (int i = 0; i < total; i++)
      node.data += sumReplacementNary(node.children[i]);
 
    return node.data;
  }
 
  static void preorderTraversal(Node node)
  {
    if (node == null)
      return;
 
    // Total children count
    int total = node.length;
 
    // Print the current node's data
    System.out.print(node.data+ " ");
 
    // All the children except the last
    for (int i = 0; i < total - 1; i++)
      preorderTraversal(node.children[i]);
 
    // Last child
    preorderTraversal(node.children[total - 1]);
  }
 
  // Driver code
  public static void main(String[] args)
  {
 
    /* Create the following tree
                1
              / | \
             2  3  4
            / \  \
           5  6   7
    */
    int N = 3;
    Node root = new Node(N, 1);
    root.children[0] = new Node(N, 2);
    root.children[1] = new Node(N, 3);
    root.children[2] = new Node(N, 4);
    root.children[0].children[0] = new Node(N, 5);
    root.children[0].children[1] = new Node(N, 6);
    root.children[0].children[2] = new Node(N, 7);
 
    System.out.print("Initial Pre-order Traversal: ");
    preorderTraversal(root);
    System.out.println();
 
    System.out.print("Final Pre-order Traversal: ");
    sumReplacementNary(root);
    preorderTraversal(root);
  }
}


Python3




# Python implementation of the approach
 
# Class for the node of the tree
class Node:
    def __init__(self, data):
        self.data = data
        self.children = []
 
# Function to replace node with
# sum of its left subtree, right
# subtree and its sum
def sumReplacementNary(node):
    if (node == None):
        return 0
 
    # Total children count
    total = len(node.children)
 
    # Taking sum of all the nodes
    for i in range(0, total):
        node.data += sumReplacementNary(node.children[i])
 
    return node.data
 
 
def preorderTraversal(node):
    if (node == None):
        return
 
    # Total children count
    total = len(node.children)
 
    # Print the current node's data
    print(node.data, end=" ")
 
    # All the children except the last
    for i in range(0, total):
        preorderTraversal(node.children[i])
 
# Driver code
# Create the following tree
#            1
#          / | \
#         2  3  4
#       / \ \
#      5  6  7
 
 
root = Node(1)
root.children.append(Node(2))
root.children.append(Node(3))
root.children.append(Node(4))
root.children[0].children.append(Node(5))
root.children[0].children.append(Node(6))
root.children[0].children.append(Node(7))
 
print("Initial Pre-order Traversal: ")
preorderTraversal(root)
print("\n")
 
print("Final Pre-order Traversal: ")
sumReplacementNary(root)
preorderTraversal(root)


C#




// C# implementation of the approach
using System;
public class GFG{
 
  // Class for the node of the tree
  class Node {
    public int data;
 
    // List of children
    public Node []children;
    public int length;
 
    public Node()
    {
      length = 0;
      data = 0;
    }
 
    public Node(int n, int data_)
    {
      children = new Node[n];
      length = n;
      data = data_;
    }
  };
 
  // Function to replace node with
  // sum of its left subtree, right
  // subtree and its sum
  static int sumReplacementNary(Node node)
  {
    if (node == null)
      return 0;
 
    // Total children count
    int total = node.length;
 
    // Taking sum of all the nodes
    for (int i = 0; i < total; i++)
      node.data += sumReplacementNary(node.children[i]);
 
    return node.data;
  }
 
  static void preorderTraversal(Node node)
  {
    if (node == null)
      return;
 
    // Total children count
    int total = node.length;
 
    // Print the current node's data
    Console.Write(node.data+ " ");
 
    // All the children except the last
    for (int i = 0; i < total - 1; i++)
      preorderTraversal(node.children[i]);
 
    // Last child
    preorderTraversal(node.children[total - 1]);
  }
 
  // Driver code
  public static void Main(String[] args)
  {
 
    /* Create the following tree
                1
              / | \
             2  3  4
            / \  \
           5  6   7
    */
    int N = 3;
    Node root = new Node(N, 1);
    root.children[0] = new Node(N, 2);
    root.children[1] = new Node(N, 3);
    root.children[2] = new Node(N, 4);
    root.children[0].children[0] = new Node(N, 5);
    root.children[0].children[1] = new Node(N, 6);
    root.children[0].children[2] = new Node(N, 7);
 
    Console.Write("Initial Pre-order Traversal: ");
    preorderTraversal(root);
    Console.WriteLine();
 
    Console.Write("Final Pre-order Traversal: ");
    sumReplacementNary(root);
    preorderTraversal(root);
  }
}


Javascript




<script>
   // JavaScript code for the above approach
 
   // Class for the node of the tree
   class Node {
 
     // List of children
     constructor(n = 0, data_ = 0) {
       this.children = new Array(10000);
       this.length = n;
       this.data = data_;
     }
   }
 
   // Function to replace node with
   // sum of its left subtree, right
   // subtree and its sum
   function sumReplacementNary(node) {
     if (node == null)
       return 0;
 
     // Total children count
     let total = node.length;
 
     // Taking sum of all the nodes
     for (let i = 0; i < total; i++)
       node.data += sumReplacementNary(node.children[i]);
 
     return node.data;
   }
 
   function preorderTraversal(node) {
     if (node == null)
       return;
 
     // Total children count
     let total = node.length;
 
     // Print the current node's data
     document.write(node.data + " ");
 
     // All the children except the last
     for (let i = 0; i < total - 1; i++)
       preorderTraversal(node.children[i]);
 
     // Last child
     preorderTraversal(node.children[total - 1]);
   }
 
   // Driver code
 
   /* Create the following tree
               1
             / | \
            2  3  4
           / \  \
          5  6  7
   */
   let N = 3;
   let root = new Node(N, 1);
   root.children[0] = new Node(N, 2);
   root.children[1] = new Node(N, 3);
   root.children[2] = new Node(N, 4);
   root.children[0].children[0] = new Node(N, 5);
   root.children[0].children[1] = new Node(N, 6);
   root.children[0].children[2] = new Node(N, 7);
 
   document.write("Initial Pre-order Traversal: ");
   preorderTraversal(root);
   document.write('<br>')
 
   document.write("Final Pre-order Traversal: ");
   sumReplacementNary(root);
   preorderTraversal(root);
 
  
 </script>


Output

Initial Pre-order Traversal: 1 2 5 6 7 3 4 
Final Pre-order Traversal: 28 20 5 6 7 3 4 

Time Complexity: O(N), Where N is the number of nodes in the tree. 

Auxiliary Space: O(N)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments