Wednesday, July 3, 2024
HomeData ModellingData Structure & AlgorithmRepeated sum of first N natural numbers

Repeated sum of first N natural numbers

Given two integers N and K, the task is to find the sum of first N natural numbers then update N as the previously calculated sum. Repeat these steps K times and finally print the value of N.
Examples: 
 

Input: N = 2, K = 2 
Output:
Operation 1: n = sum(n) = sum(2) = 1 + 2 = 3 
Operation 2: n = sum(n) = sum(3) = 1 + 2 + 3 = 6
Input: N = 3, K = 2 
Output: 21 
 

 

Approach: Find the sum of first N natural numbers using the formula (N * (N + 1)) / 2 then update N with the calculated sum. Repeat these steps exactly K times and print the final value of N.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <iostream>
using namespace std;
 
// Function to return the sum of
// the first n natural numbers
int sum(int n)
{
    int sum = (n * (n + 1)) / 2;
    return sum;
}
 
// Function to return the repeated sum
int repeatedSum(int n, int k)
{
 
    // Perform the operation exactly k times
    for (int i = 0; i < k; i++) {
 
        // Update n with the sum of
        // first n natural numbers
        n = sum(n);
    }
 
    return n;
}
 
// Driver code
int main()
{
    int n = 2, k = 2;
 
    cout << repeatedSum(n, k);
 
    return 0;
}


Java




// Java implementation of the approach
class GFG
{
     
    // Function to return the sum of
    // the first n natural numbers
    static int sum(int n)
    {
        int sum = (n * (n + 1)) / 2;
        return sum;
    }
     
    // Function to return the repeated sum
    static int repeatedSum(int n, int k)
    {
     
        // Perform the operation exactly k times
        for (int i = 0; i < k; i++)
        {
     
            // Update n with the sum of
            // first n natural numbers
            n = sum(n);
        }
        return n;
    }
     
    // Driver code
    public static void main (String[] args)
    {
        int n = 2, k = 2;
     
        System.out.println(repeatedSum(n, k));
     
    }
}
 
// This code is contributed by AnkitRai01


Python3




# Python3 implementation of the approach
 
# Function to return the sum of
# the first n natural numbers
def sum(n):
    sum = (n * (n + 1)) // 2
    return sum
 
# Function to return the repeated sum
def repeatedSum(n, k):
 
    # Perform the operation exactly k times
    for i in range(k):
 
        # Update n with the sum of
        # first n natural numbers
        n = sum(n)
 
    return n
 
# Driver code
n = 2
k = 2
 
print(repeatedSum(n, k))
 
# This code is contributed by Mohit Kumar


C#




// C# implementation of the approach
using System;
     
class GFG
{
     
    // Function to return the sum of
    // the first n natural numbers
    static int sum(int n)
    {
        int sum = (n * (n + 1)) / 2;
        return sum;
    }
     
    // Function to return the repeated sum
    static int repeatedSum(int n, int k)
    {
     
        // Perform the operation exactly k times
        for (int i = 0; i < k; i++)
        {
     
            // Update n with the sum of
            // first n natural numbers
            n = sum(n);
        }
        return n;
    }
     
    // Driver code
    public static void Main (String[] args)
    {
        int n = 2, k = 2;
     
        Console.WriteLine(repeatedSum(n, k));
    }
}
 
// This code is contributed by PrinciRaj1992


Javascript




<script>
// javascript implementation of the approach
 
// Function to return the sum of
// the first n natural numbers
    function sum(n) {
        var sum = (n * (n + 1)) / 2;
        return sum;
    }
 
    // Function to return the repeated sum
    function repeatedSum(n , k) {
 
        // Perform the operation exactly k times
        for (i = 0; i < k; i++) {
 
            // Update n with the sum of
            // first n natural numbers
            n = sum(n);
        }
        return n;
    }
 
    // Driver code
     
        var n = 2, k = 2;
 
        document.write(repeatedSum(n, k));
 
 
// This code contributed by Rajput-Ji
 
</script>


Output: 

6

 

Time Complexity: O(k)

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Ted Musemwa
As a software developer I’m interested in the intersection of computational thinking and design thinking when solving human problems. As a professional I am guided by the principles of experiential learning; experience, reflect, conceptualise and experiment.
RELATED ARTICLES

LEAVE A REPLY

Please enter your comment!
Please enter your name here

Most Popular

Recent Comments