Given a positive integer N, the task is to rearrange the digits of the given integer such that the integer becomes a power of 2. If more than one solution exists, then print the smallest possible integer without leading 0. Otherwise, print -1.
Examples:
Input: N = 460
Output: 64
Explanation:
64 is a power of 2, the required output is 64.Input: 36
Output: -1
Explanation:
Possible rearrangement of the integer are { 36, 63 }.
Therefore, the required output is -1.
Approach: The idea is to generate all permutations of the digits of the given integer. For each permutation, check if the integer is a power of 2 or not. If found to be true then print the integer. Otherwise, print -1. Follow the steps below to solve the problem:
- Convert the given integer into string say, str.
- Sort the string in ascending order.
- Generate all possible permutations of the string. For each permutation, check if the equivalent integer value of the string is a power of 2 or not. If found to be true, then print the number.
- If no such permutation of digits of the integer exists, then print -1.
Below is the implementation of the above approach:
C++
// C++ program to implement // the above approach #include <bits/stdc++.h> using namespace std; // Function to rearrange the digits of N // such that N become power of 2 int reorderedPowerOf2( int n) { // Stores digits of N string str = to_string(n); // Sort the string // ascending order sort(str.begin(), str.end()); // Stores count of digits in N int sz = str.length(); // Generate all permutation and check if // the permutation if power of 2 or not do { // Update n n = stoi(str); // If n is power of 2 if (n && !(n & (n - 1))) { return n; } } while (next_permutation(str.begin(), str.end())); return -1; } // Driver Code int main() { int n = 460; cout << reorderedPowerOf2(n); return 0; } |
Java
// Java program to implement // the above approach import java.io.*; import java.util.*; class GFG { static void swap( char [] chars, int i, int j) { char ch = chars[i]; chars[i] = chars[j]; chars[j] = ch; } static void reverse( char [] chars, int start) { for ( int i = start, j = chars.length - 1 ; i < j; i++, j--) { swap(chars, i, j); } } // Function to find lexicographically next permutations // of a string. It returns true if the string could be // rearranged as a lexicographically greater permutation // else it returns false static boolean next_permutation( char [] chars) { // Find largest index i such // that chars[i - 1] is less than chars[i] int i = chars.length - 1 ; while (chars[i - 1 ] >= chars[i]) { // if i is first index of the string, // that means we are already at // highest possible permutation i.e. // string is sorted in desc order if (--i == 0 ) { return false ; } } // if we reach here, substring chars[i..n) // is sorted in descending order // i.e. chars[i-1] < chars[i] >= chars[i+1] >= // chars[i+2] >= ... >= chars[n-1] // Find highest index j to the right of index i such // that chars[j] > chars[i–1] int j = chars.length - 1 ; while (j > i && chars[j] <= chars[i - 1 ]) { j--; } // swap characters at index i-1 with index j swap(chars, i - 1 , j); // reverse the substring chars[i..n) and return true reverse(chars, i); return true ; } // Function to rearrange the digits of N // such that N become power of 2 static int reorderedPowerOf2( int n) { // Stores digits of N String str = Integer.toString(n); char [] Str = str.toCharArray(); // Sort the string // ascending order Arrays.sort(Str); // Stores count of digits in N int sz = Str.length; // Generate all permutation and check if // the permutation if power of 2 or not do { // Update n n = Integer.parseInt( new String(Str)); // If n is power of 2 if (n > 0 && ((n & (n - 1 )) == 0 )) { return n; } } while (next_permutation(Str)); return - 1 ; } // Driver code public static void main(String[] args) { int n = 460 ; System.out.print(reorderedPowerOf2(n)); } } // This code is contributed by Dharanendra L V. |
Python3
# python program to implement # the above approach def next_permutation(): global a i = len (a) - 2 while not (i < 0 or int (a[i]) < int (a[i + 1 ])): i - = 1 if i < 0 : return False # else j = len (a) - 1 while not ( int (a[j]) > int (a[i])): j - = 1 a[i], a[j] = a[j], a[i] # swap # reverse elements from position i+1 till the end of the sequence a[i + 1 :] = reversed (a[i + 1 :]) return True # Function to rearrange the digits of N # such that N become power of 2 def reorderedPowerOf2(n): global a # Sort the string # ascending order a = sorted (a) # Stores count of digits in N sz = len (a) # Generate all permutation and check if # the permutation if power of 2 or not while True : # Update n n = int ("".join(a)) # If n is power of 2 if (n and not (n & (n - 1 ))): return n if not next_permutation(): break return - 1 # Driver Code if __name__ = = '__main__' : n = 460 a = [i for i in str (n)] print (reorderedPowerOf2(n)) # This code is contributed by mohit kumar 29 |
C#
// C# program to implement // the above approach using System; using System.Collections.Generic; class GFG { static void swap( char [] chars, int i, int j) { char ch = chars[i]; chars[i] = chars[j]; chars[j] = ch; } static void reverse( char [] chars, int start) { for ( int i = start, j = chars.Length - 1; i < j; i++, j--) { swap(chars, i, j); } } // Function to find lexicographically next permutations // of a string. It returns true if the string could be // rearranged as a lexicographically greater permutation // else it returns false static bool next_permutation( char [] chars) { // Find largest index i such // that chars[i - 1] is less than chars[i] int i = chars.Length - 1; while (chars[i - 1] >= chars[i]) { // if i is first index of the string, // that means we are already at // highest possible permutation i.e. // string is sorted in desc order if (--i == 0) { return false ; } } // if we reach here, substring chars[i..n) // is sorted in descending order // i.e. chars[i-1] < chars[i] >= chars[i+1] >= // chars[i+2] >= ... >= chars[n-1] // Find highest index j to the right of index i such // that chars[j] > chars[i–1] int j = chars.Length - 1; while (j > i && chars[j] <= chars[i - 1]) { j--; } // swap characters at index i-1 with index j swap(chars, i - 1, j); // reverse the substring chars[i..n) and return true reverse(chars, i); return true ; } // Function to rearrange the digits of N // such that N become power of 2 static int reorderedPowerOf2( int n) { // Stores digits of N string str = n.ToString(); char [] Str = str.ToCharArray(); // Sort the string // ascending order Array.Sort(Str); // Stores count of digits in N int sz = Str.Length; // Generate all permutation and check if // the permutation if power of 2 or not do { // Update n n = Convert.ToInt32( new string (Str)); // If n is power of 2 if (n > 0 && ((n & (n - 1)) == 0)) { return n; } } while (next_permutation(Str)); return -1; } // Driver code static void Main() { int n = 460; Console.WriteLine(reorderedPowerOf2(n)); } } // This code is contributed by divyeshrabadiya07. |
Javascript
<script> // JavaScript program to implement // the above approach function swap(chars,i,j) { let ch = chars[i]; chars[i] = chars[j]; chars[j] = ch; } function reverse(chars,start) { for (let i = start, j = chars.length - 1; i < j; i++, j--) { swap(chars, i, j); } } // Function to find lexicographically next permutations // of a string. It returns true if the string could be // rearranged as a lexicographically greater permutation // else it returns false function next_permutation(chars) { // Find largest index i such // that chars[i - 1] is less than chars[i] let i = chars.length - 1; while (chars[i - 1] >= chars[i]) { // if i is first index of the string, // that means we are already at // highest possible permutation i.e. // string is sorted in desc order if (--i == 0) { return false ; } } // if we reach here, substring chars[i..n) // is sorted in descending order // i.e. chars[i-1] < chars[i] >= chars[i+1] >= // chars[i+2] >= ... >= chars[n-1] // Find highest index j to the right of index i such // that chars[j] > chars[i–1] let j = chars.length - 1; while (j > i && chars[j] <= chars[i - 1]) { j--; } // swap characters at index i-1 with index j swap(chars, i - 1, j); // reverse the substring chars[i..n) and return true reverse(chars, i); return true ; } // Function to rearrange the digits of N // such that N become power of 2 function reorderedPowerOf2(n) { // Stores digits of N let str = n.toString(); let Str = str.split( "" ); // Sort the string // ascending order Str.sort(); // Stores count of digits in N let sz = Str.length; // Generate all permutation and check if // the permutation if power of 2 or not do { // Update n n = parseInt((Str).join( "" )); // If n is power of 2 if (n > 0 && ((n & (n - 1)) == 0)) { return n; } } while (next_permutation(Str)); return -1; } // Driver code let n = 460; document.write(reorderedPowerOf2(n)); // This code is contributed by patel2127 </script> |
64
Time Complexity: O(log10N * (log10N)!)
Auxiliary Space: O(log10N)
Approach 2:
We will create a digit array which stores the digit count of the given number, and we will iterate through powers of 2 and check if any of the digitcount array matches with the given numbers digitcount array.
Below is the implementation of the approach:
C++
// C++ program to implement // the above approach #include <bits/stdc++.h> using namespace std; vector< int > digitarr( int n) { vector< int > res(10); // stores the digit count of n while (n > 0) { if (n % 10 != 0) { res[n % 10]++; } n /= 10; } return res; } int reorderedPowerOf2( int N) { vector< int > arr = digitarr(N); // N is the given number // arr have the digit count of N for ( int i = 0; i < 31; i++) { // check if arr matches with any digitcount // array of 2^i vector< int > arr1 = digitarr(1 << i); if (arr == arr1) return ( int ) pow (2, i); } return -1; } // Driver code int main() { int n = 460; cout << reorderedPowerOf2(n); } // This code is contributed by phasing17. |
Java
// Java program to implement // the above approach import java.io.*; import java.util.*; class GFG { public static int reorderedPowerOf2( int N) { int [] arr = digitarr(N); // N is the given number // arr have the digit count of N for ( int i = 0 ; i < 31 ; i++) { // check if arr matches with any digitcount // array of 2^i if (Arrays.equals(arr, digitarr( 1 << i))) return ( int )Math.pow( 2 , i); } return - 1 ; } public static int [] digitarr( int n) { int [] res = new int [ 10 ]; // stores the digit count of n while (n > 0 ) { if (n % 10 != 0 ) { res[n % 10 ]++; } n /= 10 ; } return res; } // Driver code public static void main(String[] args) { int n = 460 ; System.out.print(reorderedPowerOf2(n)); } } |
Python3
# Python3 program to implement # the above approach def reorderedPowerOf2(N): arr = digitarr(N) # N is the given number # arr have the digit count of N for i in range ( 31 ): # check if arr matches with any digitcount # array of 2^i if (arr = = digitarr( 1 << i)): return pow ( 2 , i) return - 1 def digitarr(n): res = [ 0 ] * 10 # stores the digit count of n while (n > 0 ): if (n % 10 ! = 0 ): res[n % 10 ] + = 1 n = int (n / 10 ) return res # Driver code n = 460 print (reorderedPowerOf2(n)) # This code is contributed by phasing17. |
C#
// C# program to implement // the above approach using System; using System.Linq; using System.Collections.Generic; class GFG { public static int reorderedPowerOf2( int N) { int [] arr = digitarr(N); // N is the given number // arr have the digit count of N for ( int i = 0; i < 31; i++) { // check if arr matches with any digitcount // array of 2^i if (Enumerable.SequenceEqual(arr, digitarr(1 << i))) return ( int )Math.Pow(2, i); } return -1; } public static int [] digitarr( int n) { int [] res = new int [10]; // stores the digit count of n while (n > 0) { if (n % 10 != 0) { res[n % 10]++; } n /= 10; } return res; } // Driver code public static void Main( string [] args) { int n = 460; Console.WriteLine(reorderedPowerOf2(n)); } } // This code is contributed by phasing17. |
Javascript
// JS program to implement // the above approach function reorderedPowerOf2(N) { let arr = digitarr(N); // N is the given number // arr have the digit count of N for ( var i = 0; i < 31; i++) { // check if arr matches with any digitcount // array of 2^i if (arr.join( " " ) == digitarr(1 << i).join( " " ) ) return Math.pow(2, i); } return -1; } function digitarr( n) { let res = new Array(10).fill(0); // stores the digit count of n while (n > 0) { if (n % 10 != 0) { res[n % 10]++; } n = Math.floor(n / 10); } return res; } // Driver code let n = 460; console.log(reorderedPowerOf2(n)); // This code is contributed by phasing17. |
64
Time Complexity: O(k*log(k)) where k=31
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!