Friday, December 27, 2024
Google search engine
HomeLanguagesRemoving duplicate rows based on specific column in PySpark DataFrame

Removing duplicate rows based on specific column in PySpark DataFrame

In this article, we are going to drop the duplicate rows based on a specific column from dataframe using pyspark in Python. Duplicate data means the same data based on some condition (column values). For this, we are using dropDuplicates() method:

Syntax: dataframe.dropDuplicates([‘column 1′,’column 2′,’column n’]).show()

where, 

  • dataframe is the input dataframe and column name is the specific column
  • show() method is used to display the dataframe

Let’s create the dataframe.

Python3




# importing module
import pyspark
  
# importing sparksession from pyspark.sql
# module
from pyspark.sql import SparkSession
  
# creating sparksession and giving an app name
spark = SparkSession.builder.appName('sparkdf').getOrCreate()
  
# list  of students  data
data = [["1", "sravan", "vignan"], ["2", "ojaswi", "vvit"],
        ["3", "rohith", "vvit"], ["4", "sridevi", "vignan"], 
        ["1", "sravan", "vignan"], ["5", "gnanesh", "iit"]]
  
# specify column names
columns = ['student ID', 'student NAME', 'college']
  
# creating a dataframe from the lists of data
dataframe = spark.createDataFrame(data, columns)
  
print('Actual data in dataframe')
dataframe.show()


Output:

Dropping based on one column

Python3




# remove duplicate rows based on college 
# column
dataframe.dropDuplicates(['college']).show()


Output:

Dropping based on multiple columns

Python3




# remove duplicate rows based on college 
# and ID column
dataframe.dropDuplicates(['college', 'student ID']).show()


Output:

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments