Sunday, October 12, 2025
HomeData Modelling & AIRemove one element to get maximum XOR

Remove one element to get maximum XOR

Given an array arr[] of N elements, the task is to remove one element from the array such that the XOR value of the array is maximized. Print the maximized value.
Examples: 
 

Input: arr[] = {1, 1, 3} 
Output:
All possible ways of deleting one element and their corresponding XOR values will be: 
a) Remove 1 -> (1 XOR 3) = 2 
b) Remove 1 -> (1 XOR 3) = 2 
c) Remove 3 -> (1 XOR 1) = 0 
Thus, the final answer is 2.
Input: arr[] = {3, 3, 3} 
Output:
 

 

Naive approach: One way will be to remove each element one by one and then finding the XOR of the remaining elements. The time complexity of this approach will be O(N2).
Efficient approach: 
 

  • Find XOR of all the elements of the array. Let’s call this value X.
  • For each element arr[i], perform Y = (X XOR arr[i]) and update the final answer as ans = max(Y, ans).

The above method works because if (A XOR B) = C then (C XOR B) = A. To find XOR(arr[0…i-1]) ^ XOR(arr[i+1…N-1]), all we have to perform is XOR(arr) ^ arr[i] where XOR(arr) is the XOR of all the elements of the array.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the maximized XOR
// after removing an element from the array
int maxXOR(int* arr, int n)
{
    // Find XOR of the complete array
    int xorArr = 0;
    for (int i = 0; i < n; i++)
        xorArr ^= arr[i];
 
    // To store the final answer
    int ans = 0;
 
    // Iterating through the array to find
    // the final answer
    for (int i = 0; i < n; i++)
        ans = max(ans, (xorArr ^ arr[i]));
 
    // Return the final answer
    return ans;
}
 
// Driver code
int main()
{
    int arr[] = { 1, 1, 3 };
    int n = sizeof(arr) / sizeof(int);
 
    cout << maxXOR(arr, n);
 
    return 0;
}


Java




// Java implementation of the approach
class GFG
{
     
    // Function to return the maximized XOR
    // after removing an element from the array
    static int maxXOR(int arr[], int n)
    {
        // Find XOR of the complete array
        int xorArr = 0;
        for (int i = 0; i < n; i++)
            xorArr ^= arr[i];
     
        // To store the final answer
        int ans = 0;
     
        // Iterating through the array to find
        // the final answer
        for (int i = 0; i < n; i++)
            ans = Math.max(ans, (xorArr ^ arr[i]));
     
        // Return the final answer
        return ans;
    }
     
    // Driver code
    public static void main (String[] args)
    {
        int arr[] = { 1, 1, 3 };
        int n = arr.length;
        System.out.println(maxXOR(arr, n));
    }
}
 
// This code is contributed by AnkitRai01


Python3




# Python3 implementation of the approach
 
# Function to return the maximized XOR
# after removing an element from the array
def maxXOR(arr, n):
     
    # Find XOR of the complete array
    xorArr = 0
    for i in range(n):
        xorArr ^= arr[i]
 
    # To store the final answer
    ans = 0
 
    # Iterating through the array to find
    # the final answer
    for i in range(n):
        ans = max(ans, (xorArr ^ arr[i]))
 
    # Return the final answer
    return ans
 
# Driver code
arr = [1, 1, 3]
n = len(arr)
 
print(maxXOR(arr, n))
 
# This code is contributed by Mohit Kumar


C#




// C# implementation of the approach
using System;
 
class GFG
{
     
    // Function to return the maximized XOR
    // after removing an element from the array
    static int maxXOR(int []arr, int n)
    {
        // Find XOR of the complete array
        int xorArr = 0;
        for (int i = 0; i < n; i++)
            xorArr ^= arr[i];
     
        // To store the readonly answer
        int ans = 0;
     
        // Iterating through the array to find
        // the readonly answer
        for (int i = 0; i < n; i++)
            ans = Math.Max(ans, (xorArr ^ arr[i]));
     
        // Return the readonly answer
        return ans;
    }
     
    // Driver code
    public static void Main(String[] args)
    {
        int []arr = { 1, 1, 3 };
        int n = arr.Length;
        Console.WriteLine(maxXOR(arr, n));
    }
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
// Javascript implementation of the approach
 
// Function to return the maximized XOR
// after removing an element from the array
function maxXOR(arr, n)
{
    // Find XOR of the complete array
    let xorArr = 0;
    for (let i = 0; i < n; i++)
        xorArr ^= arr[i];
 
    // To store the final answer
    let ans = 0;
 
    // Iterating through the array to find
    // the final answer
    for (let i = 0; i < n; i++)
        ans = Math.max(ans, (xorArr ^ arr[i]));
 
    // Return the final answer
    return ans;
}
 
// Driver code
    let arr = [ 1, 1, 3 ];
    let n = arr.length;
 
    document.write(maxXOR(arr, n));
 
</script>


Output: 

2

 

Time Complexity: O(n)

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Dominic
32352 POSTS0 COMMENTS
Milvus
87 POSTS0 COMMENTS
Nango Kala
6720 POSTS0 COMMENTS
Nicole Veronica
11885 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11941 POSTS0 COMMENTS
Shaida Kate Naidoo
6840 POSTS0 COMMENTS
Ted Musemwa
7105 POSTS0 COMMENTS
Thapelo Manthata
6796 POSTS0 COMMENTS
Umr Jansen
6795 POSTS0 COMMENTS