Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIRemove characters from a numeric string such that string becomes divisible by...

Remove characters from a numeric string such that string becomes divisible by 8

Given a non-negative integer represented in the form of a numeric string str. Remove zero or more characters from the string such that the number becomes divisible by 8. If it is possible, print the string after removing the characters otherwise print -1.
Examples: 

Input: str = “3454” 
Output: 344 
After removing ‘5’, string becomes 344 which is divisible by 8.

Input: str = “111” 
Output: -1 

Approach: Considering the divisibility rule of 8, we just need to check if the number formed by last 3 characters of str is divisible by 8 or not. Thus, we can iterate over all multiples of 8 upto 1000 and check if any of the multiple exists as a sub-sequence in the given string, then that multiple is our required answer. Otherwise, there exists no answer since all multiples of 8 greater than 1000 also needs to have the number (formed from last 3 digits) which has already been checked.

Steps to solve the problem:

  •  In a function checkSub that takes two string arguments, sub and s.
    • Initialize a variable j to 0.
    • Iterate over the characters of s using a for loop from i = 0 to i < s.size().
      • Check if the jth character of sub is equal to the ith character of s than  increment j by 1.
    • if j is equal to the length of sub, return true. Otherwise, return false.
  •  In a function getMultiple that takes a string argument s.
    • Iterate over all multiples of 8 from 0 to 999 using a for loop from i = 0 to i < 1000 by incrementing i by 8.
      • Check if the current multiple i exists as a subsequence in the given string s using the checkSub function defined earlier.
      • If i exists as a subsequence, return i.
    • If no multiple of 8 is found, return -1.

Below is the implementation of the above approach: 

C++




// C++ program to remove digits from a
// numeric string such that the number
// becomes divisible by 8
#include <bits/stdc++.h>
using namespace std;
 
// Function that return true if sub
// is a sub-sequence in s
int checkSub(string sub, string s)
{
    int j = 0;
    for (int i = 0; i < s.size(); i++)
        if (sub[j] == s[i])
            j++;
    return j == (int)sub.size();
}
 
// Function to return a multiple of 8
// formed after removing 0 or more characters
// from the given string
int getMultiple(string s)
{
    // Iterate over all multiples of 8
    for (int i = 0; i < 1e3; i += 8) {
 
        // If current multiple
        // exists as a subsequence
        // in the given string
        if (checkSub(to_string(i), s))
            return i;
    }
 
    return -1;
}
 
// Driver Code
int main()
{
    string s = "3454";
    cout << getMultiple(s);
 
    return 0;
}


Java




// Java program to remove digits from a
// numeric string such that the number
// becomes divisible by 8
 
class GFG
{
 
    // Function that return true if sub
    // is a sub-sequence in s
    static boolean checkSub(String sub, String s)
    {
        int j = 0;
        for (int i = 0; i < s.length(); i++)
            if (sub.charAt(j) == s.charAt(i))
                j++;
                 
        return j == sub.length();
    }
     
    // Function to return a multiple of 8
    // formed after removing 0 or more characters
    // from the given string
    static int getMultiple(String s)
    {
        // Iterate over all multiples of 8
        for (int i = 0; i < 1E3; i += 8)
        {
     
            // If current multiple
            // exists as a subsequence
            // in the given string
            if (checkSub(Integer.toString(i), s))
                return i;
        }
        return -1;
    }
 
    // Driver Code
    public static void main (String[] args)
    {
            String s = "3454";
            System.out.println(getMultiple(s));
    }
}
 
// This code is contributed by mits


Python3




# Python3 program to remove digits from
# a numeric string such that the number
# becomes divisible by 8
import math as mt
 
# Function that return true if sub
# is a sub-sequence in s
def checkSub(sub, s):
 
    j = 0
    for i in range(len(s)):
        if (sub[j] == s[i]):
            j += 1
 
    if j == int(len(sub)):
        return True
    else:
        return False
 
# Function to return a multiple of 8
# formed after removing 0 or more
# characters from the given string
def getMultiple(s):
     
    # Iterate over all multiples of 8
    for i in range(0, 10**3, 8):
 
        # If current multiple
        # exists as a subsequence
        # in the given string
        if (checkSub(str(i), s)):
            return i
 
    return -1
 
# Driver Code
s = "3454"
print(getMultiple(s))
 
# This code is contributed
# by Mohit Kumar 29


C#




// C# program to remove digits from a
// numeric string such that the number
// becomes divisible by 8
using System;
 
class GFG
{
 
    // Function that return true if sub
    // is a sub-sequence in s
    static bool checkSub(string sub, string s)
    {
        int j = 0;
        for (int i = 0; i < s.Length; i++)
            if (sub[j] == s[i])
                j++;
                 
        return j == sub.Length;
    }
     
    // Function to return a multiple of 8
    // formed after removing 0 or more characters
    // from the given string
    static int getMultiple(string s)
    {
        // Iterate over all multiples of 8
        for (int i = 0; i < 1e3; i += 8)
        {
     
            // If current multiple
            // exists as a subsequence
            // in the given string
            if (checkSub(i.ToString(), s))
                return i;
        }
        return -1;
    }
 
    // Driver Code
    static void Main()
    {
            string s = "3454";
            Console.WriteLine(getMultiple(s));
    }
}
 
// This code is contributed by Ryuga


PHP




<?php
// PHP program to remove digits from a
// numeric string such that the number
// becomes divisible by 8
 
// Function that return true if sub
// is a sub-sequence in s
function checkSub($sub, $s)
{
    $j = 0;
    for ($i = 0; $i < strlen($s); $i++)
        if ($sub[$j] == $s[$i])
            $j++;
    return $j == strlen($sub);
}
 
// Function to return a multiple of 8
// formed after removing 0 or more
// characters from the given string
function getMultiple($s)
{
    // Iterate over all multiples of 8
    for ($i = 0; $i < 1e3; $i += 8)
    {
 
        // If current multiple
        // exists as a subsequence
        // in the given string
        if (checkSub((string)($i), $s))
            return $i;
    }
 
    return -1;
}
 
// Driver Code
$s = "3454";
echo getMultiple($s);
 
// This code is contributed
// by Akanksha Rai


Javascript




<script>
 
    // JavaScript program to remove digits from a
    // numeric string such that the number
    // becomes divisible by 8
     
    // Function that return true if sub
    // is a sub-sequence in s
    function checkSub(sub, s)
    {
        let j = 0;
        for (let i = 0; i < s.length; i++)
            if (sub[j] == s[i])
                j++;
                   
        return j == sub.length;
    }
       
    // Function to return a multiple of 8
    // formed after removing 0 or more characters
    // from the given string
    function getMultiple(s)
    {
        // Iterate over all multiples of 8
        for (let i = 0; i < 1e3; i += 8)
        {
       
            // If current multiple
            // exists as a subsequence
            // in the given string
            if (checkSub(i.toString(), s))
                return i;
        }
        return -1;
    }
     
    let s = "3454";
      document.write(getMultiple(s));
     
</script>


Output: 

344

 

Time Complexity: O(n)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments