Tuesday, January 7, 2025
Google search engine
HomeData Modelling & AIRemove all subtrees consisting only of even valued nodes from a Binary...

Remove all subtrees consisting only of even valued nodes from a Binary Tree

Given a Binary Tree, the task is to remove all the subtrees that do not contain any odd valued node. Print the Levelorder Traversal of the tree after removal of these subtrees. 
Note: Print NULL for removed nodes.

Examples: 

Input: Below is the given Tree:
                  1
                   \
                     2
                   /  \
                 8     5
Output: 1 NULL 2 NULL 5
Explanation:
Tree after pruning:
                  1
                   \
                     2
                       \
                        5

Input: Below is the given Tree:
                            1
                         /    \
                       2       7
                     /  \    /   \
                   8   10 12   5 
Output: 1 NULL 7 NULL 5
Explanation:
Tree after pruning:
                            1
                              \
                                7
                                  \
                                   5 

Approach: To solve the given problem, the idea is to traverse the tree using DFS Traversal and a concept of backtracking will be used. Follow the below steps to solve the problem:

  • Traverse the given tree using DFS Traversal and perform the following steps:
    • If the root node is NULL, then return.
    • If the leaf node value is even, then remove this node by returning NULL. Otherwise, return the root node from the current recursive call.
    • Recursively update the left and the right subtrees using the above conditions.
  • After completing the above steps, print the updated tree using the level order Traversal with NULL in place of removed nodes.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Node of the tree
struct node {
    int data;
    struct node *left, *right;
};
 
// Function to create a new node
node* newNode(int key)
{
    node* temp = new node;
    temp->data = key;
    temp->left = temp->right = NULL;
    return (temp);
}
 
// Function to print tree level wise
void printLevelOrder(node* root)
{
    // Base Case
    if (!root)
        return;
 
    // Create an empty queue for
    // level order traversal
    queue<node*> q;
 
    // Enqueue Root
    q.push(root);
 
    while (!q.empty()) {
 
        // Print front of queue and
        // remove it from queue
        node* temp = q.front();
        cout << temp->data << " ";
        q.pop();
 
        // If left child is present
        if (temp->left != NULL) {
 
            q.push(temp->left);
        }
 
        // Otherwise
        else if (temp->right != NULL) {
 
            cout << "NULL ";
        }
 
        // If right child is present
        if (temp->right != NULL) {
 
            q.push(temp->right);
        }
 
        // Otherwise
        else if (temp->left != NULL) {
 
            cout << "NULL ";
        }
    }
}
 
// Function to remove subtrees
node* pruneTree(node* root)
{
    // Base Case
    if (!root) {
        return NULL;
    }
 
    // Search for required condition
    // in left and right half
    root->left = pruneTree(root->left);
    root->right = pruneTree(root->right);
 
    // If the node is even
    // and leaf node
    if (root->data % 2 == 0
        && !root->right
        && !root->left)
        return NULL;
 
    return root;
}
 
// Driver Code
int main()
{
    struct node* root = newNode(1);
    root->left = newNode(2);
    root->left->left = newNode(8);
    root->left->right = newNode(10);
    root->right = newNode(7);
    root->right->left = newNode(12);
    root->right->right = newNode(5);
 
    // Function Call
    node* newRoot = pruneTree(root);
 
    // Print answer
    printLevelOrder(newRoot);
 
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
class GFG
{
 
// Node of the tree
static class node
{
    int data;
    node left, right;
};
 
// Function to create a new node
static node newNode(int key)
{
    node temp = new node();
    temp.data = key;
    temp.left = temp.right = null;
    return (temp);
}
 
// Function to print tree level wise
static void printLevelOrder(node root)
{
   
    // Base Case
    if (root==null)
        return;
 
    // Create an empty queue for
    // level order traversal
    Queue<node> q = new LinkedList<>();
 
    // Enqueue Root
    q.add(root);
    while (!q.isEmpty())
    {
 
        // Print front of queue and
        // remove it from queue
        node temp = q.peek();
        System.out.print(temp.data+ " ");
        q.remove();
 
        // If left child is present
        if (temp.left != null)
        {
            q.add(temp.left);
        }
 
        // Otherwise
        else if (temp.right != null)
        {
            System.out.print("null ");
        }
 
        // If right child is present
        if (temp.right != null)
        {
            q.add(temp.right);
        }
 
        // Otherwise
        else if (temp.left != null)
        {
            System.out.print("null ");
        }
    }
}
 
// Function to remove subtrees
static node pruneTree(node root)
{
    // Base Case
    if (root == null)
    {
        return null;
    }
 
    // Search for required condition
    // in left and right half
    root.left = pruneTree(root.left);
    root.right = pruneTree(root.right);
 
    // If the node is even
    // and leaf node
    if (root.data % 2 == 0
        && root.right==null
        && root.left==null)
        return null;
 
    return root;
}
 
// Driver Code
public static void main(String[] args)
{
    node root = newNode(1);
    root.left = newNode(2);
    root.left.left = newNode(8);
    root.left.right = newNode(10);
    root.right = newNode(7);
    root.right.left = newNode(12);
    root.right.right = newNode(5);
 
    // Function Call
    node newRoot = pruneTree(root);
 
    // Print answer
    printLevelOrder(newRoot);
}
}
 
// This code is contributed by shikhasingrajput


Python3




# Python 3 program for the above approach
 
# Node of the tree
class node:
    def __init__(self,data):
        self.data = data
        self.left = None
        self.right = None
 
# Function to print tree level wise
def printLevelOrder(root):
   
    # Base Case
    if (root==None):
        return
 
    # Create an empty queue for
    # level order traversal
    q = []
 
    # Enqueue Root
    q.append(root)
 
    while(len(q)>0):
        # Print front of queue and
        # remove it from queue
        temp = q[0]
        print(temp.data,end = " ")
        q = q[1:]
 
        # If left child is present
        if (temp.left != None):
            q.append(temp.left)
 
        # Otherwise
        elif (temp.right != None):
            print("NULL",end= " ")
 
        # If right child is present
        if (temp.right != None):
            q.append(temp.right)
 
        # Otherwise
        elif (temp.left != None):
            print("NULL",end = " ")
 
# Function to remove subtrees
def pruneTree(root):
   
    # Base Case
    if (root==None):
        return None
 
    # Search for required condition
    # in left and right half
    root.left = pruneTree(root.left)
    root.right = pruneTree(root.right)
 
    # If the node is even
    # and leaf node
    if (root.data % 2 == 0 and root.right == None and root.left==None):
        return None
 
    return root
 
# Driver Code
if __name__ == '__main__':
    root = node(1)
    root.left = node(2)
    root.left.left = node(8)
    root.left.right = node(10)
    root.right = node(7)
    root.right.left = node(12)
    root.right.right = node(5)
 
    # Function Call
    newRoot = pruneTree(root)
 
    # Print answer
    printLevelOrder(newRoot)
 
    # This code is contributed by SURENDRA_GANGWAR.


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
 
public class GFG
{
 
// Node of the tree
class node
{
    public int data;
    public node left, right;
};
 
// Function to create a new node
static node newNode(int key)
{
    node temp = new node();
    temp.data = key;
    temp.left = temp.right = null;
    return (temp);
}
 
// Function to print tree level wise
static void printLevelOrder(node root)
{
   
    // Base Case
    if (root == null)
        return;
 
    // Create an empty queue for
    // level order traversal
    Queue<node> q = new Queue<node>();
 
    // Enqueue Root
    q.Enqueue(root);
    while (q.Count != 0)
    {
 
        // Print front of queue and
        // remove it from queue
        node temp = q.Peek();
        Console.Write(temp.data+ " ");
        q.Dequeue();
 
        // If left child is present
        if (temp.left != null)
        {
            q.Enqueue(temp.left);
        }
 
        // Otherwise
        else if (temp.right != null)
        {
            Console.Write("null ");
        }
 
        // If right child is present
        if (temp.right != null)
        {
            q.Enqueue(temp.right);
        }
 
        // Otherwise
        else if (temp.left != null)
        {
            Console.Write("null ");
        }
    }
}
 
// Function to remove subtrees
static node pruneTree(node root)
{
   
    // Base Case
    if (root == null)
    {
        return null;
    }
 
    // Search for required condition
    // in left and right half
    root.left = pruneTree(root.left);
    root.right = pruneTree(root.right);
 
    // If the node is even
    // and leaf node
    if (root.data % 2 == 0
        && root.right==null
        && root.left==null)
        return null;
 
    return root;
}
 
// Driver Code
public static void Main(String[] args)
{
    node root = newNode(1);
    root.left = newNode(2);
    root.left.left = newNode(8);
    root.left.right = newNode(10);
    root.right = newNode(7);
    root.right.left = newNode(12);
    root.right.right = newNode(5);
 
    // Function Call
    node newRoot = pruneTree(root);
 
    // Print answer
    printLevelOrder(newRoot);
}
}
 
// This code is contributed by shikhasingrajput


Javascript




<script>
    // Javascript program for the above approach
     
    // Node of the tree
    class node
    {
        constructor(key) {
           this.left = null;
           this.right = null;
           this.data = key;
        }
    }
     
    // Function to create a new node
    function newNode(key)
    {
        let temp = new node(key);
        return (temp);
    }
 
    // Function to print tree level wise
    function printLevelOrder(root)
    {
 
        // Base Case
        if (root == null)
            return;
 
        // Create an empty queue for
        // level order traversal
        let q = [];
 
        // Enqueue Root
        q.push(root);
        while (q.length != 0)
        {
 
            // Print front of queue and
            // remove it from queue
            let temp = q[0];
            document.write(temp.data+ " ");
            q.shift();
 
            // If left child is present
            if (temp.left != null)
            {
                q.push(temp.left);
            }
 
            // Otherwise
            else if (temp.right != null)
            {
                document.write("Null ");
            }
 
            // If right child is present
            if (temp.right != null)
            {
                q.push(temp.right);
            }
 
            // Otherwise
            else if (temp.left != null)
            {
                document.write("Null ");
            }
        }
    }
     
    // Function to remove subtrees
    function pruneTree(root)
    {
 
        // Base Case
        if (root == null)
        {
            return null;
        }
 
        // Search for required condition
        // in left and right half
        root.left = pruneTree(root.left);
        root.right = pruneTree(root.right);
 
        // If the node is even
        // and leaf node
        if (root.data % 2 == 0
            && root.right==null
            && root.left==null)
            return null;
 
        return root;
    }
     
    let root = newNode(1);
    root.left = newNode(2);
    root.left.left = newNode(8);
    root.left.right = newNode(10);
    root.right = newNode(7);
    root.right.left = newNode(12);
    root.right.right = newNode(5);
  
    // Function Call
    let newRoot = pruneTree(root);
  
    // Print answer
    printLevelOrder(newRoot);
    
   // This code is contributed by decode2207.
</script>


Output: 

1 NULL 7 NULL 5

 

Time Complexity: O(N)
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments