Wednesday, January 8, 2025
Google search engine
HomeData Modelling & AIRemove all even parity nodes from a Doubly and Circular Singly Linked...

Remove all even parity nodes from a Doubly and Circular Singly Linked List

Given a Doubly linked list and Circular singly linked list containing N nodes, the task is to remove all the nodes from each list which contains elements whose parity is even.

Example: 

Input: CLL = 9 -> 11 -> 34 -> 6 -> 13 -> 21 
Output: 11 -> 13 -> 21 
Explanation: 
The circular singly linked list contains : 
11 -> 1011, parity = 3 
9 -> 1001, parity = 2 
34 -> 100010, parity = 2 
6 -> 110, parity = 2 
13 -> 1101, parity = 3 
21 -> 10101, parity = 3 
Here, parity for nodes containing 9, 34, and 6 are even. 
Hence, these nodes have been deleted.

Input: DLL = 18 <=> 15 <=> 8 <=> 9 <=> 14 
Output: 8 <=> 14 
Explanation: 
The linked list contains : 
18 -> 10010, parity = 2 
15 -> 1111, parity = 4 
8 -> 1000, parity = 1 
9 -> 1001, parity = 2 
14 -> 1110, parity = 3 
Here, parity for nodes containing 18, 15 and 9 are even. 
Hence, these nodes have been deleted. 

Approach: 
A simple approach is to traverse the nodes of the list one by one and for each node first, find the parity for the value present in the node by iterating through each bit and then finally remove the nodes whose parity is even.

Doubly Linked List

Below is the implementation of the above approach: 

C++




// C++ implementation to remove all
// the Even Parity Nodes from a
// doubly linked list
 
#include <bits/stdc++.h>
 
using namespace std;
 
// Node of the doubly linked list
struct Node {
    int data;
    Node *prev, *next;
};
 
// Function to insert a node at the beginning
// of the Doubly Linked List
void push(Node** head_ref, int new_data)
{
    // Allocate the node
    Node* new_node
        = (Node*)malloc(sizeof(struct Node));
 
    // Insert the data
    new_node->data = new_data;
 
    // Since we are adding at the beginning,
    // prev is always NULL
    new_node->prev = NULL;
 
    // Link the old list of the new node
    new_node->next = (*head_ref);
 
    // Change the prev of
    // head node to new node
    if ((*head_ref) != NULL)
        (*head_ref)->prev = new_node;
 
    // Move the head to point
    // to the new node
    (*head_ref) = new_node;
}
 
// Function that returns true if count
// of set bits in x is even
bool isEvenParity(int x)
{
    // parity will store the
    // count of set bits
    int parity = 0;
    while (x != 0) {
        if (x & 1)
            parity++;
        x = x >> 1;
    }
 
    if (parity % 2 == 0)
        return true;
    else
        return false;
}
 
// Function to delete a node
// in a Doubly Linked List.
// head_ref --> pointer to head node pointer.
// del --> pointer to node to be deleted
void deleteNode(Node** head_ref, Node* del)
{
    // Base case
    if (*head_ref == NULL || del == NULL)
        return;
 
    // If the node to be
    // deleted is head node
    if (*head_ref == del)
        *head_ref = del->next;
 
    // Change next only if node to be
    // deleted is not the last node
    if (del->next != NULL)
        del->next->prev = del->prev;
 
    // Change prev only if node to be
    // deleted is not the first node
    if (del->prev != NULL)
        del->prev->next = del->next;
 
    // Finally, free the memory
    // occupied by del
    free(del);
 
    return;
}
 
// Function to to remove all
// the Even Parity Nodes from a
// doubly linked list
void deleteEvenParityNodes(
    Node** head_ref)
{
    Node* ptr = *head_ref;
    Node* next;
 
    // Iterating through
    // the linked list
    while (ptr != NULL) {
        next = ptr->next;
 
        // If node's data's parity
        // is even
        if (isEvenParity(ptr->data))
            deleteNode(head_ref, ptr);
 
        ptr = next;
    }
}
 
// Function to print nodes in a
// given doubly linked list
void printList(Node* head)
{
    if (head == NULL) {
        cout << "Empty list\n";
        return;
    }
 
    while (head != NULL) {
        cout << head->data << " ";
        head = head->next;
    }
}
 
// Driver Code
int main()
{
 
    Node* head = NULL;
 
    // Create the doubly linked list
    // 18 <-> 15 <-> 8 <-> 9 <-> 14
    push(&head, 14);
    push(&head, 9);
    push(&head, 8);
    push(&head, 15);
    push(&head, 18);
 
    // Uncomment to view the list
    // cout << "Original List: ";
    // printList(head);
 
    deleteEvenParityNodes(&head);
 
    // Modified List
    printList(head);
}


Java




/*package whatever //do not write package name here */
 
import java.io.*;
public class GFG {
  static Node head; // head of linked list
 
  // Node of the doubly linked list
  class Node {
    int data;
    Node prev;
    Node next;
    // Constructor to create a new node
    // next and prev is by default initialized as null
    Node(int d) { data = d; }
  }
 
  // Add a node at the end of the list
  public void append(int new_data)
  {
    /* 1. allocate node
         * 2. put in the data */
    Node new_node = new Node(new_data);
 
    Node last = head; /* used in step 5*/
 
    /* 3. This new node is going to be the last node, so
         * make next of it as NULL*/
    new_node.next = null;
 
    /* 4. If the Linked List is empty, then make the new
         * node as head */
    if (head == null) {
      new_node.prev = null;
      head = new_node;
      return;
    }
 
    /* 5. Else traverse till the last node */
    while (last.next != null)
      last = last.next;
 
    /* 6. Change the next of last node */
    last.next = new_node;
 
    /* 7. Make last node as previous of new node */
    new_node.prev = last;
  }
 
  // Function to delete a node in a Doubly Linked List.
  // head_ref --> pointer to head node pointer.
  // del --> data of node to be deleted.
  public static void deleteNode(Node del)
  {
 
    // Base case
    if (head == null || del == null) {
      return;
    }
 
    // If node to be deleted is head node
    if (head == del) {
      head = del.next;
    }
 
    // Change next only if node to be deleted
    // is NOT the last node
    if (del.next != null) {
      del.next.prev = del.prev;
    }
 
    // Change prev only if node to be deleted
    // is NOT the first node
    if (del.prev != null) {
      del.prev.next = del.next;
    }
 
    // Finally, free the memory occupied by del
    return;
  }
  // Function that returns true if count
  // of set bits in x is even
  public static boolean isEvenParity(int x)
  {
    // parity will store the
    // count of set bits
    int parity = 0;
    while (x != 0) {
      if (x % 2 == 1)
        parity++;
      x = x >> 1;
    }
 
    if (parity % 2 == 0)
      return true;
    else
      return false;
  }
  // Function to to remove all
  // the Even Parity Nodes from a
  // doubly linked list
  public static void deleteEvenParityNodes()
  {
    Node ptr = head;
    Node next;
 
    // Iterating through
    // the linked list
    while (ptr != null) {
      next = ptr.next;
 
      // If node's data's parity
      // is even
      if (isEvenParity(ptr.data)) {
        deleteNode(ptr);
      }
      ptr = next;
    }
  }
  // This function prints contents of
  // linked list starting from the given node
  public static void printlist()
  {
    Node node = head;
    System.out.println(
      "Traversal in forward Direction");
    while (node != null) {
      System.out.print(node.data + " ");
      node = node.next;
    }
  }
 
  /* Driver program to test above functions*/
  public static void main(String[] args)
  {
 
    /* Start with the empty list */
    GFG dll = new GFG();
 
    // Create the doubly linked list
    // 14 <-> 9 <-> 8 <-> 15 <-> 18
    dll.append(18);
    dll.append(15);
    dll.append(8);
    dll.append(9);
    dll.append(14);
 
    // Uncomment to view the list
    // cout << "Original List: ";
    // printList();
    deleteEvenParityNodes();
 
    // Modified List
    printlist();
  }
}
 
// This code is contributed by rj13to.


Python3




# Python3 implementation to remove all
# the Even Parity Nodes from a
# doubly linked list
  
# Node of the doubly linked list
class Node:
     
    def __init__(self):
         
        self.data = 0
        self.prev = None
        self.next = None
  
# Function to insert a node at the
# beginning of the Doubly Linked List
def push(head_ref, new_data):
 
    # Allocate the node
    new_node = Node()
  
    # Insert the data
    new_node.data = new_data
  
    # Since we are adding at the
    # beginning, prev is always None
    new_node.prev = None
  
    # Link the old list of the new node
    new_node.next = (head_ref)
  
    # Change the prev of
    # head node to new node
    if ((head_ref) != None):
        (head_ref).prev = new_node
  
    # Move the head to point
    # to the new node
    (head_ref) = new_node
     
    return head_ref
 
# Function that returns true if count
# of set bits in x is even
def isEvenParity(x):
 
    # parity will store the
    # count of set bits
    parity = 0
     
    while (x != 0):
        if (x & 1):
            parity += 1
             
        x = x >> 1
  
    if (parity % 2 == 0):
        return True
    else:
        return False
 
# Function to delete a node
# in a Doubly Linked List.
# head_ref -. pointer to head node pointer.
# delt -. pointer to node to be deleted
def deleteNode(head_ref, delt):
 
    # Base case
    if (head_ref == None or delt == None):
        return
  
    # If the node to be
    # deleted is head node
    if (head_ref == delt):
        head_ref = delt.next
  
    # Change next only if node to be
    # deleted is not the last node
    if (delt.next != None):
        delt.next.prev = delt.prev
  
    # Change prev only if node to be
    # deleted is not the first node
    if (delt.prev != None):
        delt.prev.next = delt.next
  
    # Finally, free the memory
    # occupied by delt
    del(delt)
  
    return head_ref
 
# Function to to remove all
# the Even Parity Nodes from a
# doubly linked list
def deleteEvenParityNodes(head_ref):
 
    ptr = head_ref
    next = None
  
    # Iterating through
    # the linked list
    while (ptr != None):
        next = ptr.next
  
        # If node's data's parity
        # is even
        if (isEvenParity(ptr.data)):
            head_ref = deleteNode(head_ref, ptr)
  
        ptr = next
         
    return head_ref
     
# Function to print nodes in a
# given doubly linked list
def printList(head):
 
    if (head == None):
        print("Empty list\n")
        return
 
    while (head != None):
        print(head.data, end = ' ')
        head = head.next
  
# Driver Code
if __name__=='__main__':
  
    head = None
     
    # Create the doubly linked list
    # 18 <. 15 <. 8 <. 9 <. 14
    head = push(head, 14)
    head = push(head, 9)
    head = push(head, 8)
    head = push(head, 15)
    head = push(head, 18)
  
    # Uncomment to view the list
    # cout << "Original List: ";
    # printList(head);
    head = deleteEvenParityNodes(head)
  
    # Modified List
    printList(head)
 
# This code is contributed by rutvik_56


C#




/*package whatever //do not write package name here */
using System;
using System.Collections.Generic;
public class GFG {
  static Node head; // head of linked list
 
  // Node of the doubly linked list
  class Node {
    public int data;
    public Node prev;
    public Node next;
     
    // Constructor to create a new node
    // next and prev is by default initialized as null
    public Node(int d) { data = d; }
  }
 
  // Add a node at the end of the list
  public void append(int new_data)
  {
     
    /* 1. allocate node
         * 2. put in the data */
    Node new_node = new Node(new_data);
 
    Node last = head; /* used in step 5*/
 
    /* 3. This new node is going to be the last node, so
         * make next of it as NULL*/
    new_node.next = null;
 
    /* 4. If the Linked List is empty, then make the new
         * node as head */
    if (head == null) {
      new_node.prev = null;
      head = new_node;
      return;
    }
 
    /* 5. Else traverse till the last node */
    while (last.next != null)
      last = last.next;
 
    /* 6. Change the next of last node */
    last.next = new_node;
 
    /* 7. Make last node as previous of new node */
    new_node.prev = last;
  }
 
  // Function to delete a node in a Doubly Linked List.
  // head_ref --> pointer to head node pointer.
  // del --> data of node to be deleted.
  static void deleteNode(Node del)
  {
 
    // Base case
    if (head == null || del == null) {
      return;
    }
 
    // If node to be deleted is head node
    if (head == del) {
      head = del.next;
    }
 
    // Change next only if node to be deleted
    // is NOT the last node
    if (del.next != null) {
      del.next.prev = del.prev;
    }
 
    // Change prev only if node to be deleted
    // is NOT the first node
    if (del.prev != null) {
      del.prev.next = del.next;
    }
 
    // Finally, free the memory occupied by del
    return;
  }
   
  // Function that returns true if count
  // of set bits in x is even
  public static bool isEvenParity(int x)
  {
     
    // parity will store the
    // count of set bits
    int parity = 0;
    while (x != 0) {
      if (x % 2 == 1)
        parity++;
      x = x >> 1;
    }
 
    if (parity % 2 == 0)
      return true;
    else
      return false;
  }
   
  // Function to to remove all
  // the Even Parity Nodes from a
  // doubly linked list
  public static void deleteEvenParityNodes()
  {
    Node ptr = head;
    Node next;
 
    // Iterating through
    // the linked list
    while (ptr != null) {
      next = ptr.next;
 
      // If node's data's parity
      // is even
      if (isEvenParity(ptr.data)) {
        deleteNode(ptr);
      }
      ptr = next;
    }
  }
   
  // This function prints contents of
  // linked list starting from the given node
  public static void printlist()
  {
    Node node = head;
    Console.WriteLine(
      "Traversal in forward Direction");
    while (node != null) {
      Console.Write(node.data + " ");
      node = node.next;
    }
  }
 
  /* Driver program to test above functions*/
  public static void Main(String[] args)
  {
 
    /* Start with the empty list */
    GFG dll = new GFG();
 
    // Create the doubly linked list
    // 14 <-> 9 <-> 8 <-> 15 <-> 18
    dll.append(18);
    dll.append(15);
    dll.append(8);
    dll.append(9);
    dll.append(14);
 
    // Uncomment to view the list
    // cout << "Original List: ";
    // printList();
    deleteEvenParityNodes();
 
    // Modified List
    printlist();
  }
}
 
// This code is contributed by shikhasingrajput


Javascript




<script>
 
// JavaScript implementation to remove all
// the Even Parity Nodes from a
// doubly linked list
 
// Node of the doubly linked list
class Node{
     
    constructor(){
        this.data = 0
        this.prev = null
        this.next = null
    }
 
}
 
// Function to insert a node at the
// beginning of the Doubly Linked List
function push(head_ref, new_data){
 
    // Allocate the node
    let new_node = new Node()
 
    // Insert the data
    new_node.data = new_data
 
    // Since we are adding at the
    // beginning, prev is always null
    new_node.prev = null
 
    // Link the old list of the new node
    new_node.next = head_ref
 
    // Change the prev of
    // head node to new node
    if (head_ref != null)
        head_ref.prev = new_node
 
    // Move the head to point
    // to the new node
    head_ref = new_node
     
    return head_ref
}
 
// Function that returns true if count
// of set bits in x is even
function isEvenParity(x){
 
    // parity will store the
    // count of set bits
    let parity = 0
     
    while (x != 0){
        if (x & 1)
            parity += 1
             
        x = x >> 1
    }
 
    if (parity % 2 == 0)
        return true
    else
        return false
}
 
// Function to delete a node
// in a Doubly Linked List.
// head_ref -. pointer to head node pointer.
// delt -. pointer to node to be deleted
function deleteNode(head_ref, delt){
 
    // Base case
    if (head_ref == null || delt == null)
        return
 
    // If the node to be
    // deleted is head node
    if (head_ref == delt)
        head_ref = delt.next
 
    // Change next only if node to be
    // deleted is not the last node
    if (delt.next != null)
        delt.next.prev = delt.prev
 
    // Change prev only if node to be
    // deleted is not the first node
    if (delt.prev != null)
        delt.prev.next = delt.next
 
    // Finally, free the memory
    // occupied by delt
    delt = null
 
    return head_ref
}
 
// Function to to remove all
// the Even Parity Nodes from a
// doubly linked list
function deleteEvenParityNodes(head_ref){
 
    let ptr = head_ref
    let next = null
 
    // Iterating through
    // the linked list
    while (ptr != null){
        next = ptr.next
 
        // If node's data's parity
        // is even
        if (isEvenParity(ptr.data))
            head_ref = deleteNode(head_ref, ptr)
 
        ptr = next
    }
         
    return head_ref
}
     
// Function to print nodes in a
// given doubly linked list
function printList(head){
 
    if (head == null){
        document.write("Empty list","</br>")
        return
    }
 
    while (head != null){
        document.write(head.data,' ')
        head = head.next
    }
}
 
// Driver Code
 
let head = new Node()
 
// Create the doubly linked list
// 18 <. 15 <. 8 <. 9 <. 14
head = push(head, 14)
head = push(head, 9)
head = push(head, 8)
head = push(head, 15)
head = push(head, 18)
 
// Uncomment to view the list
// cout << "Original List: ";
// printList(head);
head = deleteEvenParityNodes(head)
 
// Modified List
printList(head)
 
 
// This code is contributed by shinjanpatra
 
</script>


Output: 

8 14

 

Time Complexity: O(K*N), where N is the size of the linked list and K is the number of bits in the maximum number present in the linked list.

Auxiliary Space: O(1)

Circular Singly Linked List

Below is the implementation of the above approach: 

C++




// C++ program to remove all
// the Even Parity Nodes from a
// circular singly linked list
 
#include <bits/stdc++.h>
using namespace std;
 
// Structure for a node
struct Node {
    int data;
    struct Node* next;
};
 
// Function to insert a node at the beginning
// of a Circular linked list
void push(struct Node** head_ref, int data)
{
    // Create a new node
    // and make head as next
    // of it.
    struct Node* ptr1
        = (struct Node*)malloc(
            sizeof(struct Node));
 
    struct Node* temp = *head_ref;
    ptr1->data = data;
    ptr1->next = *head_ref;
 
    // If linked list is not NULL then
    // set the next of last node
    if (*head_ref != NULL) {
 
        // Find the node before head
        // and update next of it.
        while (temp->next != *head_ref)
            temp = temp->next;
 
        temp->next = ptr1;
    }
    else
 
        // Point for the first node
        ptr1->next = ptr1;
 
    *head_ref = ptr1;
}
 
// Function to delete the node from a
// Circular Linked list
void deleteNode(
    Node*& head_ref, Node* del)
{
    // If node to be deleted is head node
    if (head_ref == del)
        head_ref = del->next;
 
    struct Node* temp = head_ref;
 
    // Traverse list till not found
    // delete node
    while (temp->next != del) {
        temp = temp->next;
    }
 
    // Copy the address of the node
    temp->next = del->next;
 
    // Finally, free the memory
    // occupied by del
    free(del);
 
    return;
}
 
// Function that returns true if count
// of set bits in x is even
bool isEvenParity(int x)
{
    // parity will store the
    // count of set bits
    int parity = 0;
    while (x != 0) {
        if (x & 1)
            parity++;
        x = x >> 1;
    }
 
    if (parity % 2 == 0)
        return true;
    else
        return false;
}
 
// Function to delete all
// the Even Parity Nodes
// from the singly circular linked list
void deleteEvenParityNodes(Node*& head)
{
    if (head == NULL)
        return;
 
    if (head == head->next) {
        if (isEvenParity(head->data))
            head = NULL;
        return;
    }
 
    struct Node* ptr = head;
 
    struct Node* next;
 
    // Traverse the list till the end
    do {
        next = ptr->next;
 
        // If the node's data has even parity,
        // delete node 'ptr'
        if (isEvenParity(ptr->data))
            deleteNode(head, ptr);
 
        // Point to the next node
        ptr = next;
 
    } while (ptr != head);
 
    if (head == head->next) {
        if (isEvenParity(head->data))
            head = NULL;
        return;
    }
}
 
// Function to print nodes in a
// given Circular linked list
void printList(struct Node* head)
{
    if (head == NULL) {
        cout << "Empty List\n";
        return;
    }
 
    struct Node* temp = head;
    if (head != NULL) {
        do {
            printf("%d ", temp->data);
            temp = temp->next;
        } while (temp != head);
    }
}
 
// Driver code
int main()
{
    // Initialize lists as empty
    struct Node* head = NULL;
 
    // Created linked list will be
    // 11->9->34->6->13->21
    push(&head, 21);
    push(&head, 13);
    push(&head, 6);
    push(&head, 34);
    push(&head, 9);
    push(&head, 11);
 
    deleteEvenParityNodes(head);
 
    printList(head);
 
    return 0;
}


Java




// Java program to remove all
// the Even Parity Nodes from a
// circular singly linked list
class GFG{
 
// Structure for a node
static class Node
{
    int data;
    Node next;
};
 
// Function to insert a node at
// the beginning of a Circular
// linked list
static Node push(Node head_ref, int data)
{
     
    // Create a new node
    // and make head as next
    // of it.
    Node ptr1 = new Node();
 
    Node temp = head_ref;
    ptr1.data = data;
    ptr1.next = head_ref;
 
    // If linked list is not null then
    // set the next of last node
    if (head_ref != null)
    {
         
        // Find the node before head
        // and update next of it.
        while (temp.next != head_ref)
            temp = temp.next;
 
        temp.next = ptr1;
    }
    else
 
        // Point for the first node
        ptr1.next = ptr1;
 
    head_ref = ptr1;
    return head_ref;
}
 
// Function to delete the node
// from a Circular Linked list
static void deleteNode(Node head_ref,
                       Node del)
{
     
    // If node to be deleted is
    // head node
    if (head_ref == del)
        head_ref = del.next;
 
    Node temp = head_ref;
 
    // Traverse list till not found
    // delete node
    while (temp.next != del)
    {
        temp = temp.next;
    }
 
    // Copy the address of the node
    temp.next = del.next;
 
    // Finally, free the memory
    // occupied by del
    System.gc();
 
    return;
}
 
// Function that returns true if count
// of set bits in x is even
static boolean isEvenParity(int x)
{
     
    // Parity will store the
    // count of set bits
    int parity = 0;
     
    while (x != 0)
    {
        if ((x & 1) != 0)
            parity++;
             
        x = x >> 1;
    }
 
    if (parity % 2 == 0)
        return true;
    else
        return false;
}
 
// Function to delete all the
// Even Parity Nodes from the
// singly circular linked list
static void deleteEvenParityNodes(Node head)
{
    if (head == null)
        return;
 
    if (head == head.next)
    {
        if (isEvenParity(head.data))
            head = null;
             
        return;
    }
 
    Node ptr = head;
    Node next;
 
    // Traverse the list till the end
    do
    {
        next = ptr.next;
 
        // If the node's data has
        // even parity, delete node 'ptr'
        if (isEvenParity(ptr.data))
            deleteNode(head, ptr);
 
        // Point to the next node
        ptr = next;
 
    } while (ptr != head);
 
    if (head == head.next)
    {
        if (isEvenParity(head.data))
            head = null;
             
        return;
    }
}
 
// Function to print nodes in a
// given Circular linked list
static void printList(Node head)
{
    if (head == null)
    {
        System.out.print("Empty List\n");
        return;
    }
 
    Node temp = head;
    if (head != null)
    {
        do
        {
            System.out.printf("%d ", temp.data);
            temp = temp.next;
        } while (temp != head);
    }
}
 
// Driver code
public static void main(String[] args)
{
     
    // Initialize lists as empty
    Node head = null;
 
    // Created linked list will be
    // 11.9.34.6.13.21
    head = push(head, 21);
    head = push(head, 13);
    head = push(head, 6);
    head = push(head, 34);
    head = push(head, 9);
    head = push(head, 11);
 
    deleteEvenParityNodes(head);
 
    printList(head);
}
}
 
// This code is contributed by Amit Katiyar


Python3




# Python3 program to remove all
# the Even Parity Nodes from a
# circular singly linked list
  
# Structure for a node
class Node:
     
    def __init__(self):
         
        self.data = 0
        self.next = None
  
# Function to insert a node at the beginning
# of a Circular linked list
def push(head_ref, data):
 
    # Create a new node
    # and make head as next
    # of it.
    ptr1 = Node()
          
    temp = head_ref;
    ptr1.data = data;
    ptr1.next = head_ref;
  
    # If linked list is not None then
    # set the next of last node
    if (head_ref != None):
  
        # Find the node before head
        # and update next of it.
        while (temp.next != head_ref):
            temp = temp.next;
  
        temp.next = ptr1;
     
    else:
  
        # Point for the first node
        ptr1.next = ptr1;
  
    head_ref = ptr1;
     
    return head_ref
  
# Function to delete the node from a
# Circular Linked list
def deleteNode( head_ref, delt):
 
    # If node to be deleted is head node
    if (head_ref == delt):
        head_ref = delt.next;
  
    temp = head_ref;
  
    # Traverse list till not found
    # delete node
    while (temp.next != delt):
        temp = temp.next;
  
    # Copy the address of the node
    temp.next = delt.next;
  
    # Finally, free the memory
    # occupied by delt
    del(delt);
  
    return head_ref;
  
# Function that returns true if count
# of set bits in x is even
def isEvenParity(x):
 
    # parity will store the
    # count of set bits
    parity = 0;
    while (x != 0):
        if (x & 1) != 0:
            parity += 1
        x = x >> 1;
      
    if (parity % 2 == 0):
        return True;
    else:
        return False;
  
# Function to delete all
# the Even Parity Nodes
# from the singly circular linked list
def deleteEvenParityNodes(head):
 
    if (head == None):
        return head;
  
    if (head == head.next):
        if (isEvenParity(head.data)):
            head = None;
        return head;
     
    ptr = head;
  
    next = None
  
    # Traverse the list till the end
    while True:
 
        next = ptr.next;
  
        # If the node's data has even parity,
        # delete node 'ptr'
        if (isEvenParity(ptr.data)):
            head=deleteNode(head, ptr);
  
        # Point to the next node
        ptr = next;
         
        if(ptr == head):
            break
 
    if (head == head.next):
        if (isEvenParity(head.data)):
            head = None;
        return head;
         
    return head;
    
# Function to print nodes in a
# given Circular linked list
def printList(head):
 
    if (head == None):
        print("Empty List")
        return;
  
    temp = head;
     
    if (head != None):       
        while True:           
            print(temp.data, end=' ')
            temp = temp.next
             
            if temp == head:
                break
             
# Driver code
if __name__=='__main__':
     
    # Initialize lists as empty
    head = None;
  
    # Created linked list will be
    # 11.9.34.6.13.21
    head=push(head, 21);
    head=push(head, 13);
    head=push(head, 6);
    head=push(head, 34);
    head=push(head, 9);
    head=push(head, 11);
  
    head=deleteEvenParityNodes(head);
  
    printList(head);
  
# This code is contributed by pratham_76


C#




// C# program to remove all
// the Even Parity Nodes from a
// circular singly linked list
using System;
class GFG{
 
// Structure for a node
public class Node
{
  public int data;
  public Node next;
};
 
// Function to insert a node at
// the beginning of a Circular
// linked list
static Node push(Node head_ref,
                 int data)
{   
  // Create a new node
  // and make head as next
  // of it.
  Node ptr1 = new Node();
 
  Node temp = head_ref;
  ptr1.data = data;
  ptr1.next = head_ref;
 
  // If linked list is not
  // null then set the next
  // of last node
  if (head_ref != null)
  {
    // Find the node before head
    // and update next of it.
    while (temp.next != head_ref)
      temp = temp.next;
 
    temp.next = ptr1;
  }
  else
 
    // Point for the first node
    ptr1.next = ptr1;
 
  head_ref = ptr1;
  return head_ref;
}
 
// Function to delete the node
// from a Circular Linked list
static void deleteNode(Node head_ref,
                       Node del)
{   
  // If node to be deleted is
  // head node
  if (head_ref == del)
    head_ref = del.next;
 
  Node temp = head_ref;
 
  // Traverse list till not
  // found delete node
  while (temp.next != del)
  {
    temp = temp.next;
  }
 
  // Copy the address of
  // the node
  temp.next = del.next;
 
  return;
}
 
// Function that returns true
// if count of set bits in x
// is even
static bool isEvenParity(int x)
{
  // Parity will store the
  // count of set bits
  int parity = 0;
 
  while (x != 0)
  {
    if ((x & 1) != 0)
      parity++;
 
    x = x >> 1;
  }
 
  if (parity % 2 == 0)
    return true;
  else
    return false;
}
 
// Function to delete all the
// Even Parity Nodes from the
// singly circular linked list
static void deleteEvenParityNodes(Node head)
{
  if (head == null)
    return;
 
  if (head == head.next)
  {
    if (isEvenParity(head.data))
      head = null;
 
    return;
  }
 
  Node ptr = head;
  Node next;
 
  // Traverse the list
  // till the end
  do
  {
    next = ptr.next;
 
    // If the node's data has
    // even parity, delete node 'ptr'
    if (isEvenParity(ptr.data))
      deleteNode(head, ptr);
 
    // Point to the next node
    ptr = next;
 
  } while (ptr != head);
 
  if (head == head.next)
  {
    if (isEvenParity(head.data))
      head = null;
 
    return;
  }
}
 
// Function to print nodes in a
// given Circular linked list
static void printList(Node head)
{
  if (head == null)
  {
    Console.Write("Empty List\n");
    return;
  }
 
  Node temp = head;
  if (head != null)
  {
    do
    {
      Console.Write(temp.data + " ");
      temp = temp.next;
    } while (temp != head);
  }
}
 
// Driver code
public static void Main(String[] args)
{   
  // Initialize lists as empty
  Node head = null;
 
  // Created linked list will be
  // 11.9.34.6.13.21
  head = push(head, 21);
  head = push(head, 13);
  head = push(head, 6);
  head = push(head, 34);
  head = push(head, 9);
  head = push(head, 11);
 
  deleteEvenParityNodes(head);
  printList(head);
}
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
 
// Javascript program to remove all
// the Even Parity Nodes from a
// circular singly linked list
 
// Structure for a node
class Node
{
    constructor(val)
    {
        this.data = val;
        this.next = null;
    }
}
 
// Function to insert a node at
// the beginning of a Circular
// linked list
function push(head_ref, data)
{
     
    // Create a new node
    // and make head as next
    // of it.
    var ptr1 = new Node();
 
    var temp = head_ref;
    ptr1.data = data;
    ptr1.next = head_ref;
 
    // If linked list is not null then
    // set the next of last node
    if (head_ref != null)
    {
         
        // Find the node before head
        // and update next of it.
        while (temp.next != head_ref)
            temp = temp.next;
 
        temp.next = ptr1;
    }
    else
     
        // Point for the first node
        ptr1.next = ptr1;
 
    head_ref = ptr1;
    return head_ref;
}
 
// Function to delete the node
// from a Circular Linked list
function deleteNode(head_ref, del)
{
     
    // If node to be deleted is
    // head node
    if (head_ref == del)
        head_ref = del.next;
 
    var temp = head_ref;
 
    // Traverse list till not found
    // delete node
    while (temp.next != del)
    {
        temp = temp.next;
    }
 
    // Copy the address of the node
    temp.next = del.next;
 
    // Finally, free the memory
    // occupied by del
    return;
}
 
// Function that returns true if count
// of set bits in x is even
function isEvenParity(x)
{
     
    // Parity will store the
    // count of set bits
    var parity = 0;
 
    while (x != 0)
    {
        if ((x & 1) != 0)
            parity++;
 
        x = x >> 1;
    }
 
    if (parity % 2 == 0)
        return true;
    else
        return false;
}
 
// Function to delete all the
// Even Parity Nodes from the
// singly circular linked list
function deleteEvenParityNodes(head)
{
    if (head == null)
        return;
 
    if (head == head.next)
    {
        if (isEvenParity(head.data))
            head = null;
 
        return;
    }
     
    var ptr = head;
    var next;
 
    // Traverse the list till the end
    do
    {
        next = ptr.next;
 
        // If the node's data has
        // even parity, delete node 'ptr'
        if (isEvenParity(ptr.data))
            deleteNode(head, ptr);
 
        // Point to the next node
        ptr = next;
 
    } while (ptr != head);
 
    if (head == head.next)
    {
        if (isEvenParity(head.data))
            head = null;
 
        return;
    }
}
 
// Function to print nodes in a
// given Circular linked list
function printList(head)
{
    if (head == null)
    {
        document.write("Empty List\n");
        return;
    }
     
    var temp = head;
    if (head != null)
    {
        do
        {
            document.write(temp.data + " ");
            temp = temp.next;
        } while (temp != head);
    }
}
 
// Driver code
 
// Initialize lists as empty
var head = null;
 
// Created linked list will be
// 11.9.34.6.13.21
head = push(head, 21);
head = push(head, 13);
head = push(head, 6);
head = push(head, 34);
head = push(head, 9);
head = push(head, 11);
 
deleteEvenParityNodes(head);
 
printList(head);
 
// This code is contributed by gauravrajput1
 
</script>


Output: 

11 13 21

 

Time Complexity: O(K*N), where N is the size of the linked list and K is the number of bits in the maximum number present in the linked list.

Auxiliary Space: O(1) because it is using constant space

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments