Given a binary array arr[], the task is to find the number of operations required to remove all 1s from the adjacent left of 0s. In each operation, all 1s, to the immediate left of a 0, are changed to 0.
Examples:
Input: arr[] = { 1, 0, 0, 1, 1, 0 }
Output: 2
Explanation:
Operation 1: Change in index 0 and 4. arr[] = { 0, 0, 0, 1, 0, 0 }
Operation 2: Change in index 3. arr[] = { 0, 0, 0, 0, 0, 0 }
No more operations required.Input: arr[] = { 0, 1, 0, 1 }
Output: 1
Explanation:
Operation 1: Change in index 1. arr[] = { 0, 0, 0, 1 }
No more operations required.
Approach: This problem can be solved using Greedy Approach. The idea is to calculate the maximum number of consecutive 1’s before 0 which gives the number of times the given operation needed to perform such that the array cannot be altered further.
Below is the implementation of the above approach:
C++
// C++ implementation of the above approach #include <bits/stdc++.h> using namespace std; // Function to find the maximum number // of 1's before 0 void noOfMoves( int arr[], int n) { int cnt = 0; int maxCnt = 0; // Traverse the array for ( int i = 0; i < n; i++) { // If value is 1 if (arr[i] == 1) { cnt++; } else { // If consecutive 1 followed // by 0, then update the maxCnt if (cnt != 0) { maxCnt = max(maxCnt, cnt); cnt = 0; } } } // Print the maximum consecutive 1's // followed by 0 cout << maxCnt << endl; } // Driver Code int main() { int arr[] = { 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1 }; int N = sizeof (arr) / sizeof (arr[0]); // Function Call noOfMoves(arr, N); int arr1[] = { 1, 0, 1, 0, 1, 0, 1, 0 }; N = sizeof (arr) / sizeof (arr[0]); // Function Call noOfMoves(arr1, N); return 0; } |
Java
// Java implementation of the above approach class GFG{ // Function to find the maximum number // of 1's before 0 static void noOfMoves( int arr[], int n) { int cnt = 0 ; int maxCnt = 0 ; // Traverse the array for ( int i = 0 ; i < n; i++) { // If value is 1 if (arr[i] == 1 ) { cnt++; } else { // If consecutive 1 followed // by 0, then update the maxCnt if (cnt != 0 ) { maxCnt = Math.max(maxCnt, cnt); cnt = 0 ; } } } // Print the maximum consecutive 1's // followed by 0 System.out.print(maxCnt + "\n" ); } // Driver Code public static void main(String[] args) { int arr[] = { 0 , 1 , 1 , 1 , 1 , 0 , 0 , 1 , 1 , 0 , 0 , 1 }; int N = arr.length; // Function Call noOfMoves(arr, N); int arr1[] = { 1 , 0 , 1 , 0 , 1 , 0 , 1 , 0 }; N = arr1.length; // Function Call noOfMoves(arr1, N); } } // This code is contributed by 29AjayKumar |
Python 3
# Python 3 implementation of the above approach # Function to find the maximum number # of 1's before 0 def noOfMoves(arr,n): cnt = 0 maxCnt = 0 # Traverse the array for i in range (n): # If value is 1 if (arr[i] = = 1 ): cnt + = 1 else : # If consecutive 1 followed # by 0, then update the maxCnt if (cnt ! = 0 ): maxCnt = max (maxCnt, cnt) cnt = 0 # Print the maximum consecutive 1's # followed by 0 print (maxCnt) # Driver Code if __name__ = = '__main__' : arr = [ 0 , 1 , 1 , 1 , 1 , 0 , 0 , 1 , 1 , 0 , 0 , 1 ] N = len (arr) # Function Call noOfMoves(arr, N) arr1 = [ 1 , 0 , 1 , 0 , 1 , 0 , 1 , 0 ] N = len (arr1) # Function Call noOfMoves(arr1, N) # This code is contributed by Surendra_Gangwar |
C#
// C# implementation of the above approach using System; public class GFG{ // Function to find the maximum number // of 1's before 0 static void noOfMoves( int []arr, int n) { int cnt = 0; int maxCnt = 0; // Traverse the array for ( int i = 0; i < n; i++) { // If value is 1 if (arr[i] == 1) { cnt++; } else { // If consecutive 1 followed // by 0, then update the maxCnt if (cnt != 0) { maxCnt = Math.Max(maxCnt, cnt); cnt = 0; } } } // Print the maximum consecutive 1's // followed by 0 Console.Write(maxCnt + "\n" ); } // Driver Code public static void Main(String[] args) { int []arr = { 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1 }; int N = arr.Length; // Function Call noOfMoves(arr, N); int []arr1 = { 1, 0, 1, 0, 1, 0, 1, 0 }; N = arr1.Length; // Function Call noOfMoves(arr1, N); } } // This code contributed by Rajput-Ji |
Javascript
<script> // JavaScript implementation of the above approach // Function to find the maximum number // of 1's before 0 function noOfMoves(arr, n) { let cnt = 0; let maxCnt = 0; // Traverse the array for (let i = 0; i < n; i++) { // If value is 1 if (arr[i] == 1) { cnt++; } else { // If consecutive 1 followed // by 0, then update the maxCnt if (cnt != 0) { maxCnt = Math.max(maxCnt, cnt); cnt = 0; } } } // Print the maximum consecutive 1's // followed by 0 document.write( maxCnt + "<br>" ); } // Driver Code let arr = [ 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1 ]; let N = arr.length; // Function Call noOfMoves(arr, N); let arr1 = [ 1, 0, 1, 0, 1, 0, 1, 0 ]; N = arr.length; // Function Call noOfMoves(arr1, N); //This code is contributed by Mayank Tyagi </script> |
4 1
Time Complexity: O(N), where N is the length of the array.
Auxiliary Space: O(1), as constant space is required.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!