Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIReduce sum of same-indexed elements of two arrays to less than K...

Reduce sum of same-indexed elements of two arrays to less than K by rearranging the second array

Given two arrays arr1[] and arr2[], both of size N and an integer X, the task is to check if the sum of same-indexed elements of both the arrays at corresponding indices can be made at most K after rearranging the second array. If it is possible then print “Yes” else print “No”.

Examples:

Input: arr1[] = {1, 2, 3}, arr2[] = {1, 1, 2}, X = 4
Output: Yes
Explanation:
Rearranging the array B[] as {1, 2, 1}. Now the sum of corresponding indices are:
A[0] + B[0] = 1 + 1 = 2 ? 4
A[1] + B[1] = 2 + 2 = 4 ? 4
A[2] + B[2] = 3 + 1 = 4 ? 4

Input: arr1[] = {1, 2, 3, 4}, arr2[] = {1, 2, 3, 4},  X = 4
Output: No
Explanation: There is no way that the array B[] can be rearranged such that the condition A[i] + B[i] <= X is satisfied.

Naive Approach: The simplest approach is to generate all possible permutations of the array B[] and if any permutation satisfies the given condition, then print Yes. Otherwise, print No

Time Complexity: O(N!)
Auxiliary Space: O(1)

Efficient Approach: To optimize the above approach, the idea is to use Sorting. Follow the steps below to solve the problem:

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if elements
// of B[] can be rearranged
// such that A[i] + B[i] <= X
void rearrange(int A[], int B[],
               int N, int X)
{
    // Checks the given condition
    bool flag = true;
 
    // Sort A[] in ascending order
    sort(A, A + N);
 
    // Sort B[] in descending order
    sort(B, B + N, greater<int>());
 
    // Traverse the arrays A[] and B[]
    for (int i = 0; i < N; i++) {
 
        // If A[i] + B[i] exceeds X
        if (A[i] + B[i] > X) {
 
            // Rearrangement not possible,
            // set flag to false
            flag = false;
            break;
        }
    }
 
    // If flag is true
    if (flag)
        cout << "Yes";
 
    // Otherwise
    else
        cout << "No";
}
 
// Driver Code
int main()
{
    int A[] = { 1, 2, 3 };
    int B[] = { 1, 1, 2 };
    int X = 4;
    int N = sizeof(A) / sizeof(A[0]);
 
    // Function Call
    rearrange(A, B, N, X);
 
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
class GFG
{
 
  // Function to check if elements
  // of B[] can be rearranged
  // such that A[i] + B[i] <= X
  static void rearrange(int A[], int B[],
                        int N, int X)
  {
 
    // Checks the given condition
    boolean flag = true;
 
    // Sort A[] in ascending order
    Arrays.sort(A);
 
    // Sort B[] in descending order
    Arrays.sort(B);
 
    // Traverse the arrays A[] and B[]
    for (int i = 0; i < N; i++)
    {
 
      // If A[i] + B[i] exceeds X
      if (A[i] + B[N - 1 - i] > X)
      {
 
        // Rearrangement not possible,
        // set flag to false
        flag = false;
        break;
      }
    }
 
    // If flag is true
    if (flag == true)
      System.out.print("Yes");
 
    // Otherwise
    else
      System.out.print("No");
  }
 
  // Driver Code
  public static void main (String[] args)
  {
    int A[] = { 1, 2, 3 };
    int B[] = { 1, 1, 2 };
    int X = 4;
    int N = A.length;
 
    // Function Call
    rearrange(A, B, N, X);
  }
}
 
// This code is contributed by AnkThon


Python3




# Python3 program for the above approach
 
# Function to check if elements
# of B can be rearranged
# such that A[i] + B[i] <= X
def rearrange(A, B, N, X):
   
    # Checks the given condition
    flag = True
 
    # Sort A in ascending order
    A = sorted(A)
 
    # Sort B in descending order
    B = sorted(B)[::-1]
 
    # Traverse the arrays A and B
    for i in range(N):
 
        # If A[i] + B[i] exceeds X
        if (A[i] + B[i] > X):
 
            # Rearrangement not possible,
            # set flag to false
            flag = False
            break
 
    # If flag is true
    if (flag):
        print("Yes")
 
    # Otherwise
    else:
        print("No")
 
# Driver Code
if __name__ == '__main__':
    A = [ 1, 2, 3 ]
    B = [ 1, 1, 2 ]
    X = 4
    N = len(A)
 
    # Function Call
    rearrange(A, B, N, X)
 
# This code is contributed by mohit kumar 29


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
class GFG
{
 
  // Function to check if elements
  // of B[] can be rearranged
  // such that A[i] + B[i] <= X
  static void rearrange(int[] A, int[] B,
                        int N, int X)
  {
 
    // Checks the given condition
    bool flag = true;
 
    // Sort A[] in ascending order
    Array.Sort(A);
 
    // Sort B[] in descending order
    Array.Sort(B);
 
    // Traverse the arrays A[] and B[]
    for (int i = 0; i < N; i++)
    {
 
      // If A[i] + B[i] exceeds X
      if (A[i] + B[N - 1 - i] > X)
      {
 
        // Rearrangement not possible,
        // set flag to false
        flag = false;
        break;
      }
    }
 
    // If flag is true
    if (flag == true)
      Console.WriteLine("Yes");
 
    // Otherwise
    else
      Console.WriteLine("No");
  }
 
  // Driver Code
  public static void Main()
  {
    int []A = { 1, 2, 3 };
    int []B = { 1, 1, 2 };
    int X = 4;
    int N = A.Length;
 
    // Function Call
    rearrange(A, B, N, X);
  }
}
 
// This code is contributed by AnkThon


Javascript




<script>
 
// Javascript program of the above approach
 
// Function to check if elements
// of B[] can be rearranged
// such that A[i] + B[i] <= X
function rearrange(A, B, N, X)
{
 
    // Checks the given condition
    let flag = true;
     
    // Sort A[] in ascending order
    A.sort();
     
    // Sort B[] in descending order
    B.sort();
     
    // Traverse the arrays A[] and B[]
    for(let i = 0; i < N; i++)
    {
         
        // If A[i] + B[i] exceeds X
        if (A[i] + B[N - 1 - i] > X)
        {
             
            // Rearrangement not possible,
            // set flag to false
            flag = false;
            break;
        }
    }
     
    // If flag is true
    if (flag == true)
        document.write("Yes");
     
    // Otherwise
    else
        document.write("No");
}
 
// Driver Code
let A = [ 1, 2, 3 ];
let B = [ 1, 1, 2 ];
let X = 4;
let N = A.length;
 
// Function Call
rearrange(A, B, N, X);
 
// This code is contributed by avijitmondal1998
 
</script>


Output: 

Yes

 

Time Complexity: O(N*log N)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments