Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIReduce given Matrix by size 1 using sum of all 2×2 submatrices

Reduce given Matrix by size 1 using sum of all 2×2 submatrices

Given a square matrix M[][] of size N*N, the task is to reduce that matrix into a matrix of size (N-1) * (N-1) using the following operation:  

  • Take all the 2×2 submatrix from N*N matrix,
  • Insert sum of each submatrix to the resultant matrix L[ ][ ] of size N-1 * N-1 at the corresponding position.

Examples:

Input: M[][] = {{ 1, 2, 3, 4 },  
                        { 4, 5, 6, 7 },  
                        { 7, 8, 9, 10 },  
                        { 10, 11, 12, 13 }}
Output: L[][] = {{12, 16, 20},  
                          {24, 28, 32},  
                          {36, 40, 44}}
Explanation:

Input: M[][] = {{ 3, 6, 3},  
                        { 4, 7, 6},  
                        { 2, 1, 9}}
Output:  L[][] = {{20, 22},  
                           {14, 23}}

 

Approach: The task can be solved by simulating the process of the defined operation. Follow the below steps to solve the problem:

  1. Declare empty array l[] to store element of reduced matrix
  2. Declare c = s = 0, s for taking sum and c for changing column and p[ ] for storing sum after every iteration.
  3. Now s is, s = M[ i ][ c ] + M[ i ][ c + 1 ] + M[ i + 1 ][ c ] + M[ i+1 ][ c+1 ]
  4. It will store 4 elements, like element at index [00, 01, 10, 11], then [01, 02, 11, 12] similarly from row 2 and 3
  5. Store the first sum in array p[] and increment c and again assign s=0.
  6. Repeat step 3, hence we will get array p [ ].
  7. Store p in matrix l [ ] and repeat step 2.

Below is the implementation of the approach:

C++14




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the desired matrix
vector<vector<int> > checkMat(vector<vector<int> >& M,
                            int N)
{
 
// Empty array to store 2x2 matrix element
vector<vector<int> > l;
 
for (int i = 0; i < N - 1; i++) {
 
    // Initialization
    int c = 0, s = 0;
    vector<int> p;
 
    for (int j = 0; j < N - 1; j++) {
 
    // Taking sum of 4 elements
    s += M[i][j] + M[i][j+1];
    s += M[i + 1][j] + M[i + 1][j+1];
 
    // Appending sum in array p
    p.push_back(s);
 
    // Assigning s to 0, to take sum
    // of another 4 element
    s = 0;
 
    // Increment c
    c++;
    }
    // Append array p[] to l
    l.push_back(p);
}
return l;
}
 
// Driver code
int main()
{
 
// Original matrix
vector<vector<int> > M = { { 1, 2, 3, 4 },
                            { 4, 5, 6, 7 },
                            { 7, 8, 9, 10 },
                            { 10, 11, 12, 13 } };
 
// Size of matrix
int N = M.size();
 
// Calling function
vector<vector<int> > res = checkMat(M, N);
 
// Printing the result
for (int i = 0; i < res.size(); i++) {
    for (int j = 0; j < res[i].size(); j++) {
    cout << res[i][j] << " ";
    }
    cout << "\n";
}
}
 
// This code is contributed by Taranpreet and improved by prophet1999


Java




// Java code for the above approach
import java.util.*;
 
class GFG
{
 
// Function to find the desired matrix
static ArrayList<ArrayList<Integer> >
    checkMat(int[][] M, int N)
{
 
    // Empty array to store 2x2 matrix element
    ArrayList<ArrayList<Integer> > l
    = new ArrayList<ArrayList<Integer> >(2);
    for (int i = 0; i < N - 1; i++) {
 
    // Initialization
    ArrayList<Integer> p = new ArrayList<Integer>();
    int c = 0, s = 0;
 
    for (int j = 0; j < N - 1; j++) {
 
        // Taking sum of 4 elements
        s += M[i][j] + M[i][j+1];
        s += M[i + 1][j] + M[i + 1][j+1];
 
        // Appending sum in array p
        p.add(s);
 
        // Assigning s to 0, to take sum
        // of another 4 element
        s = 0;
 
        // Increment c
        c++;
    }
    // Append array p[] to l
    l.add(p);
    }
    return l;
}
 
public static void main(String[] args)
{
 
    // Original matrix
    int[][] M = { { 1, 2, 3, 4 },
                { 4, 5, 6, 7 },
                { 7, 8, 9, 10 },
                { 10, 11, 12, 13 } };
 
    // Size of matrix
    int N = M.length;
 
    // Calling function
    ArrayList<ArrayList<Integer> > res = checkMat(M, N);
 
    // Printing the result
    for (int i = 0; i < res.size(); i++) {
    for (int j = 0; j < res.get(i).size(); j++) {
        System.out.print(res.get(i).get(j) + " ");
    }
    System.out.println();
    }
}
}
 
// This code is contributed by Potta Lokesh and improved by prophet1999


Python3




# Python program for the above approach
 
# Function to find the desired matrix
def checkMat(M, N):
 
    # Empty array to store 2x2 matrix element
    l = []
 
    for i in range(N-1):
 
        # Initialization
        c = s = 0
        p = []
 
        for j in range(N-1):
 
            # Taking sum of 4 elements
            s += M[i][j]+M[i][j+1]
            s += M[i + 1][j]+M[i + 1][j+1]
 
            # Appending sum in array p
            p.append(s)
 
            # Assigning s to 0, to take sum
            # of another 4 element
            s = 0
 
            # Increment c
            c += 1
 
        # Append array p[] to l
        l.append(p)
    return l
 
# Driver code
if __name__ == "__main__":
 
    # Original matrix
    M = [[1, 2, 3, 4],
        [4, 5, 6, 7],
        [7, 8, 9, 10],
        [10, 11, 12, 13]]
 
    # Size of matrix
    N = len(M)
 
    # Calling function
    res = checkMat(M, N)
    # Printing the result
    for i in res:
        print(*i)
 
# this code is improved by prophet1999


C#




// C# code for the above approach
using System;
using System.Collections.Generic;
   
public class GFG
{
 
  // Function to find the desired matrix
  static List<List<int> >
    checkMat(int[,] M, int N)
  {
 
    //  Empty array to store 2x2 matrix element
    List<List<int> > l
      = new List<List<int> >(2);
    for (int i = 0; i < N - 1; i++) {
 
      //  Initialization
      List<int> p = new List<int>();
      int c = 0, s = 0;
 
      for (int j = 0; j < N - 1; j++) {
 
        //  Taking sum of 4 elements
        s += M[i,c] + M[i,c + 1];
        s += M[i + 1,c] + M[i + 1,c + 1];
 
        //  Appending sum in array p
        p.Add(s);
 
        //  Assigning s to 0, to take sum
        //  of another 4 element
        s = 0;
 
        //  Increment c
        c++;
      }
      //  Append array p[] to l
      l.Add(p);
    }
    return l;
  }
 
  public static void Main(String[] args)
  {
 
    // Original matrix
    int[,] M = { { 1, 2, 3, 4 },
                 { 4, 5, 6, 7 },
                 { 7, 8, 9, 10 },
                 { 10, 11, 12, 13 } };
 
    //  Size of matrix
    int N = M.GetLength(0);
 
    //  Calling function
    List<List<int> > res = checkMat(M, N);
 
    //  Printing the result
    for (int i = 0; i < res.Count; i++) {
      for (int j = 0; j < res[i].Count; j++) {
        Console.Write(res[i][j] + " ");
      }
      Console.WriteLine();
    }
  }
}
 
// This code is contributed by 29AjayKumar and improved by prophet1999


Javascript




<script>
    // JavaScript program for the above approach
 
    // Function to find the desired matrix
    const checkMat = (M, N) => {
 
        // Empty array to store 2x2 matrix element
        let l = [];
 
        for (let i = 0; i < N - 1; ++i) {
 
            // Initialization
            let c = s = 0;
            let p = [];
 
            for (let j = 0; j < N - 1; ++j) {
 
                // Taking sum of 4 elements
                s += M[i][j] + M[i][j+1];
                s += M[i + 1][j] + M[i + 1][j+1];
 
                // Appending sum in array p
                p.push(s);
 
                // Assigning s to 0, to take sum
                // of another 4 element
                s = 0;
 
                // Increment c
                c += 1;
            }
            // document.write(p);
            // document.write("<br/>")
 
            // Append array p[] to l
            l.push(p);
        }
        return l;
    }
 
    // Driver code
 
    // Original matrix
    let M = [[1, 2, 3, 4],
    [4, 5, 6, 7],
    [7, 8, 9, 10],
    [10, 11, 12, 13]];
 
    // Size of matrix
    let N = M.length;
 
    // Calling function
    let res = checkMat(M, N);
    // Printing the result
    for (let i in res) {
        for (let j in res[i]) {
            document.write(`${res[i][j]} `);
        }
        document.write("<br/>");
    }
 
// This code is contributed by rakeshsahni and improved by prophet1999
 
</script>


Output

12 16 20
24 28 32
36 40 44

Time Complexity: O(N*N)
Auxiliary Space: O(N*N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments