Tuesday, January 21, 2025
Google search engine
HomeData Modelling & AIReduce every element of the array to it’s half retaining the sum...

Reduce every element of the array to it’s half retaining the sum zero

Given an array arr[] of N integers with total element sum equal to zero. The task is to reduce every element to it’s half such that the total sum remain zero. For every odd element X in the array, it could be reduced to either(X + 1) / 2 or (X – 1) / 2.
Examples: 
 

Input: arr[] = {-7, 14, -7} 
Output: -4 7 -3 
-4 + 7 -3 = 0
Input: arr[] = {-14, 14} 
Output: -7 7 
 

 

Approach: All the even elements could be divided by 2 but for odd elements, they have to be alternatively reduced to (X + 1) / 2 and (X – 1) / 2 in order to retain the original sum (i.e. 0) in the final array.
Below is the implementation of the above approach:
 

C++




// C++ implementation of the above approach
#include<bits/stdc++.h>
using namespace std;
 
// Function to reduce every
// element to it's half such that
// the total sum remain zero
void half(int arr[], int n)
{
    int i;
     
    // Flag to switch between alternating
    // odd numbers in the array
    int flag = 0;
     
    // For every element of the array
    for (i = 0; i < n; i++)
    {
         
        // If its even then reduce it to half
        if (arr[i] % 2 == 0 )
            cout << arr[i] / 2 << " ";
             
        // If its odd
        else
        {
             
            // Reduce the odd elements
            // alternatively
            if (flag == 0)
            {
                cout << arr[i] / 2 - 1 << " ";
                 
                // Switch flag
                flag = 1;
            }
            else
            {
                int q = arr[i] / 2;
                cout<<q <<" ";
                 
                // Switch flag
                flag = 0;
            }
        }
    }
}
 
// Driver code
int main ()
{
    int arr[] = {-7, 14, -7};
    int len = sizeof(arr)/sizeof(arr[0]);
    half(arr, len) ;
    return 0;
}
 
// This code is contributed by Rajput-Ji


Java




// Java implementation of the above approach
class GFG
{
 
// Function to reduce every
// element to it's half such that
// the total sum remain zero
static void half(int arr[], int n)
{
    int i;
     
    // Flag to switch between alternating
    // odd numbers in the array
    int flag = 0;
     
    // For every element of the array
    for (i = 0; i < n; i++)
    {
         
        // If its even then reduce it to half
        if (arr[i] % 2 == 0 )
            System.out.print(arr[i] / 2 + " ");
             
        // If its odd
        else
        {
             
            // Reduce the odd elements
            // alternatively
            if (flag == 0)
            {
                System.out.print(arr[i] / 2 - 1 + " ");
                 
                // Switch flag
                flag = 1;
            }
            else
            {
                int q = arr[i] / 2;
                System.out.print(q + " ");
                 
                // Switch flag
                flag = 0;
            }
        }
    }
}
 
// Driver code
public static void main (String[] args)
{
    int arr[] = {-7, 14, -7};
    int len = arr.length;
    half(arr, len) ;
}
}
 
// This code is contributed by AnkitRai01


Python3




# Python3 implementation of the approach
 
# Function to reduce every
# element to it's half such that
# the total sum remain zero
def half(arr, n) :
     
    # Flag to switch between alternating
    # odd numbers in the array
    flag = 0
     
    # For every element of the array
    for i in range(n):
         
        # If its even then reduce it to half
        if arr[i] % 2 == 0 :
            print(arr[i]//2, end =" ")
             
        # If its odd
        else :
             
            # Reduce the odd elements
            # alternatively
            if flag == 0:
                print(arr[i]//2, end =" ")
                 
                # Switch flag
                flag = 1
            else :
                q = arr[i]//2
                q+= 1
                print(q, end =" ")
                 
                # Switch flag
                flag = 0
 
# Driver code
arr = [-7, 14, -7]
half(arr, len(arr))


C#




// C# implementation of the above approach
using System;
 
class GFG
{
 
// Function to reduce every
// element to it's half such that
// the total sum remain zero
static void half(int []arr, int n)
{
    int i;
     
    // Flag to switch between alternating
    // odd numbers in the array
    int flag = 0;
     
    // For every element of the array
    for (i = 0; i < n; i++)
    {
         
        // If its even then reduce it to half
        if (arr[i] % 2 == 0 )
            Console.Write(arr[i] / 2 + " ");
             
        // If its odd
        else
        {
             
            // Reduce the odd elements
            // alternatively
            if (flag == 0)
            {
                Console.Write(arr[i] / 2 - 1 + " ");
                 
                // Switch flag
                flag = 1;
            }
            else
            {
                int q = arr[i] / 2;
                Console.Write(q + " ");
                 
                // Switch flag
                flag = 0;
            }
        }
    }
}
 
// Driver code
public static void Main ()
{
    int [] arr = {-7, 14, -7};
    int len = arr.Length;
    half(arr, len) ;
}
}
 
// This code is contributed by mohit kumar 29


Javascript




<script>
// Javascript implementation of the above approach
 
// Function to reduce every
// element to it's half such that
// the total sum remain zero
function half(arr, n)
{
    let i;
     
    // Flag to switch between alternating
    // odd numbers in the array
    let flag = 0;
     
    // For every element of the array
    for (i = 0; i < n; i++)
    {
         
        // If its even then reduce it to half
        if (arr[i] % 2 == 0 )
            document.write(arr[i] / 2 + " ");
             
        // If its odd
        else
        {
             
            // Reduce the odd elements
            // alternatively
            if (flag == 0)
            {
                document.write(Math.ceil(arr[i] / 2) - 1 + " ");
                 
                // Switch flag
                flag = 1;
            }
            else
            {
                let q = Math.ceil(arr[i] / 2);
                document.write(q + " ");
                 
                // Switch flag
                flag = 0;
            }
        }
    }
}
 
// Driver code
    let arr = [-7, 14, -7];
    let len = arr.length;
    half(arr, len) ;
 
// This code is contributed by _saurabh_jaiswal
</script>


Output: 

-4 7 -3

 

Time Complexity : O(n) ,as we are traversing once on the array.

Space Complexity : O(1) ,as we are not using any extra space.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments