Given an array A[] having N positive integers, the task is to perform the following operations and maximize the sum obtained while reducing the array:
- Select an array element (say A[i]) and delete one occurrence of that element and add A[i] to the sum.
- Delete all the occurrences of A[i]-1 and A[i]+1.
- Perform these operations until the array is empty.
Examples:
Input: A[] = {3, 4, 2}
Output: 6
Explanation: First, delete number 4 to add 4 to sum and consequently 3 is also deleted.
After that the array A = [2].
Then we delete number 2 and add 2.
Array becomes empty i.e. array A = [].
And hence total sum = (4 + 2) = 6Input: A[] = {2, 2, 3, 3, 3, 4}
Output: 9
Explanation: First, delete number 3 to add 3. And all 2’s and 4’s numbers are also deleted.
After that we the array is A = [3, 3].
Then delete number 3 again to add 3 points. Sum = 3 + 3 = 6.
The array is now A = [3].
In last operation delete number 3 once again to add 3. Sum = 6+3 = 9.
Now array becomes empty.
Hence maximum sum obtained is 9.
Naive Approach: The naive approach is to try to reduce the array in all possible ways, i.e. for any value (say A[i] )that can be selected and one occurrence of that element can be deleted or any other element having difference of 1 with A[i] can be selected (if that is present in array) and one occurrence of that can be removed.
Time Complexity: O(2N)
Auxiliary Space: O(N)
Efficient Approach: This problem can be solved using Dynamic Programming based on the following idea:
If an element x is deleted once then all occurrences of x-1 and x+1 will be removed from array.
- So, if all array elements having value from 0 till x is considered then maximum sum till x depends on maximum sum till x-2 and maximum sum till x-1, i.e. if x is included then x-1 cannot be included and vice versa. [No need to consider the x+1 or x+2 because here iteration is from lower value to upper value side]
- Suppose these max values for each x are stored in an array (say dp[]) then dp[x] = max(dp[x-1], dp[x-2]+x*occurrences of x).
Follow the illustration below for a better understanding.
Illustration:
Consider an array A[] = {2, 2, 3, 3, 3, 4}
So the frequency of elements will be:
freq = {{2 -> 2}, {3 -> 3}, {4 -> 1}}Maximum of array is 4.
So the dp[] array will be of size 5.
The dp[] array will be {0, 0, 0, 0, 0}For x = 2:
=> dp[2] = max(dp[1], dp[0] + freq[2]*2)
= max(0, 2*2) = max(0, 0 + 4) = 4
=> dp[] = {0, 0, 4, 0, 0}For x = 3:
=> dp[3] = max(dp[2], dp[1] + freq[3]*3)
= max(4, 0 + 3*3) = max(0, 9) = 9
=> dp[] = {0, 0, 4, 9, 0}For x = 4:
=> dp[4] = max(dp[3], dp[2] + freq[4]*4)
= max(9, 4 + 4*1) = max(9, 8) = 9
=> dp[] = {0, 0, 4, 9, 9}So the answer is dp[4] = 9 which is the maximum possible sum
Follow the steps mentioned below to implement the above observation:
- Create an unordered_map mp to store the frequency of each array element.
- Calculate the maximum value of the array (say max_val).
- Create one array dp[] to store the maximum values as in the observation and initialize dp[1] as count of 1s.
- Iterate from i = 2 to max_val:
- Calculate the dp[i] as mentioned above.
- Return the dp[max_val] after all iterations as answer because it holds the maximum possible sum.
Below is the implementation of the above approach:
C++
// C++ program to implement the approach #include <bits/stdc++.h> using namespace std; // Function to return Maximum number // of points that can be earned int MaximumPoints( int A[], int array_size) { // Maximum element in array A int element_max = *max_element(A, A + array_size); unordered_map< int , int > mp; // Dp array for storing points int dp[element_max + 1] = { 0 }; // Storing frequency of integers for ( int i = 0; i < array_size; i++) { mp[A[i]]++; } dp[0] = 0; dp[1] = mp[1]; // Calculation for getting maximum sum // in dp[] array at every steps for ( int i = 2; i <= element_max; i++) { dp[i] = max(dp[i - 1], dp[i - 2] + mp[i] * i); } // Returning the maximum sum return dp[element_max]; } int main() { int A[] = { 2, 2, 3, 3, 3, 4 }; // Size of Array int array_size = sizeof (A) / sizeof (A[0]); // Function call cout << MaximumPoints(A, array_size); return 0; } |
Java
// Java program to implement the approach import java.util.*; import java.util.Arrays; public class GFG { // Function to return Maximum number // of points that can be earned static int MaximumPoints( int A[], int array_size) { // Maximum element in array A int element_max =Arrays.stream(A).max().getAsInt(); HashMap<Integer, Integer> mp = new HashMap<>(); // Dp array for storing points int dp[] = new int [element_max + 1 ]; // Storing frequency of integers for ( int i = 0 ; i < array_size; i++) { if (mp.containsKey(A[i])){ mp.put(A[i], mp.get(A[i]) + 1 ); } else { mp.put(A[i], 1 ); } } dp[ 0 ] = 0 ; if (mp.containsKey( 1 )) dp[ 1 ] = mp.get( 1 ); // Calculation for getting maximum sum // in dp[] array at every steps for ( int i = 2 ; i <= element_max; i++) { dp[i] = Math.max(dp[i - 1 ], dp[i - 2 ] + mp.get(i) * i); } // Returning the maximum sum return dp[element_max]; } // Driver Code public static void main (String[] args) { int A[] = { 2 , 2 , 3 , 3 , 3 , 4 }; // Size of Array int array_size = A.length; // Function call System.out.print(MaximumPoints(A, array_size)); } } // This code is contributed by hrithikgarg03188. |
Python3
# Python program to implement the approach # Function to return Maximum number # of points that can be earned def MaximumPoints(A, array_size): # Maximum element in array A element_max = max (A) mp = {} # Dp array for storing points dp = [ 0 for i in range (element_max + 1 )] # Storing frequency of integers for i in range (array_size): if (A[i] in mp): mp[A[i]] = mp[A[i]] + 1 else : mp[A[i]] = 1 if ( 1 in mp): dp[ 1 ] = mp[ 1 ] # Calculation for getting maximum sum # in dp[] array at every steps for i in range ( 2 ,element_max + 1 ): dp[i] = ( max (dp[i - 1 ], dp[i - 2 ] + mp[i] * i)) # Returning the maximum sum return dp[element_max] A = [ 2 , 2 , 3 , 3 , 3 , 4 ] # Size of Array array_size = len (A) # Function call print (MaximumPoints(A, array_size)) # This code is contributed by shinjanpatra |
C#
// C# code to implement the approach using System; using System.Collections.Generic; using System.Linq; public class GFG { // Function to return Maximum number // of points that can be earned static int MaximumPoints( int [] A, int array_size) { // Maximum element in array A int element_max = A.Max(); Dictionary< int , int > mp = new Dictionary< int , int >(); // Dp array for storing points int [] dp = new int [element_max + 1]; // Storing frequency of integers for ( int i = 0; i < array_size; i++) { if (mp.ContainsKey(A[i])) { mp[A[i]] += 1; } else { mp[A[i]] = 1; } } dp[0] = 0; if (mp.ContainsKey(1)) dp[1] = mp[1]; // Calculation for getting maximum sum // in dp[] array at every steps for ( int i = 2; i <= element_max; i++) { dp[i] = Math.Max(dp[i - 1], dp[i - 2] + mp[i] * i); } // Returning the maximum sum return dp[element_max]; } // Driver Code public static void Main( string [] args) { int [] A = { 2, 2, 3, 3, 3, 4 }; // Size of Array int array_size = A.Length; // Function call Console.Write(MaximumPoints(A, array_size)); } } // This code is contributed by phasing17. |
Javascript
// JavaScript program to implement the approach // Function to return Maximum number // of points that can be earned function MaximumPoints(A, array_size) { // Maximum element in array A var element_max = Math.max(... A); mp = {}; // Dp array for storing points var dp = []; // Storing frequency of integers for ( var i = 0; i < array_size; i++) { if (mp.hasOwnProperty(A[i])) mp[A[i]] = mp[A[i]] + 1; else { mp[A[i]] = 1; } } dp.push(0); if (dp.hasOwnProperty(1)) dp.push(mp[1]); else dp.push(0); // Calculation for getting maximum sum // in dp[] array at every steps for ( var i = 2; i <= element_max; i++) { dp.push(Math.max(dp[i - 1], dp[i - 2] + mp[i] * i)); } // Returning the maximum sum return dp[element_max]; } var A = [ 2, 2, 3, 3, 3, 4 ]; // Size of Array var array_size = A.length; // Function call console.log(MaximumPoints(A, array_size)); // this code was contributed by phasing17 |
9
Time Complexity: O(N+M)
Auxiliary Space: O(N+M) where M is the maximum element of the array
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!