Given a number n, we need to find the sum of each digits of the number till the number becomes a single digit. We need to print “yes” if the sum is a prime or “no” if it is not prime.
Examples:
Input : 5602 Output: No Explanation: Step 1- 5+6+0+2 = 13 Step 2- 1+3 = 4 4 is not prime Input : 56 Output : Yes Explanation: Step 1- 5+6 = 11 Step 2- 1+1 = 2 hence 2 is prime
The idea is simple, we can quickly find recursive sum of digits.
int recDigSum(int n) { if (n == 0) return 0; return (n % 9 == 0) ? 9 : (n % 9); }
Once, recursive sum is calculated, check if it is prime or not by simply checking if it is 2, 3, 5 or 7 (These are only single digit primes).
C++
// CPP code to check if // recursive sum of // digits is prime or not. #include<iostream> using namespace std; // Function for recursive // digit sum int recDigSum( int n) { if (n == 0) return 0; else { if (n % 9 == 0) return 9; else return n % 9; } } // function to check if prime // or not the single digit void check( int n) { // calls function which // returns sum till // single digit n = recDigSum(n); // checking prime if (n == 2 or n == 3 or n == 5 or n == 7) cout << "Yes" ; else cout << "No" ; } // Driver code int main() { int n = 5602; check(n); } // This code is contributed by Shreyanshi. |
Java
// java code to check if // recursive sum of // digits is prime or not. import java.io.*; class GFG { // Function for recursive // digit sum static int recDigSum( int n) { if (n == 0 ) return 0 ; else { if (n % 9 == 0 ) return 9 ; else return n % 9 ; } } // function to check if prime // or not the single digit static void check( int n) { // calls function which // returns sum till // single digit n = recDigSum(n); // checking prime if (n == 2 || n == 3 || n == 5 || n == 7 ) System.out.println ( "Yes" ); else System.out.println( "No" ); } // Driver code public static void main (String[] args) { int n = 5602 ; check(n); } } // This code is contributed by vt_m |
Python
# Python code to check if recursive sum # of digits is prime or not. def recDigSum(n): if n = = 0 : return 0 else : if n % 9 = = 0 : return 9 else : return n % 9 # function to check if prime or not # the single digit def check(n): # calls function which returns sum # till single digit n = recDigSum(n) # checking prime if n = = 2 or n = = 3 or n = = 5 or n = = 7 : print "Yes" else : print "No" # driver code n = 5602 check(n) |
C#
// C# code to check if // recursive sum of // digits is prime or not. using System; class GFG { // Function for recursive // digit sum static int recDigSum( int n) { if (n == 0) return 0; else { if (n % 9 == 0) return 9; else return n % 9; } } // function to check if prime // or not the single digit static void check( int n) { // calls function which // returns sum till // single digit n = recDigSum(n); // checking prime if (n == 2 || n == 3 || n == 5 || n == 7) Console.WriteLine ( "Yes" ); else Console.WriteLine( "No" ); } // Driver code public static void Main () { int n = 5602; check(n); } } // This code is contributed by anuj_67. |
PHP
<?php // PHP code to check if // recursive sum of // digits is prime or not. // Function for recursive // digit sum function recDigSum( $n ) { if ( $n == 0) return 0; else { if ( $n % 9 == 0) return 9; else return $n % 9; } } // function to check if prime // or not the single digit function check( $n ) { // calls function which // returns sum till // single digit $n = recDigSum( $n ); // checking prime if ( $n == 2 or $n == 3 or $n == 5 or $n == 7) echo "Yes" ; else echo "No" ; } // Driver code $n = 5602; check( $n ); // This code is contributed by ajit. ?> |
Javascript
<script> // Javascript code to check if // recursive sum of digits is // prime or not. // Function for recursive // digit sum function recDigSum(n) { if (n == 0) return 0; else { if (n % 9 == 0) return 9; else return n % 9; } } // Function to check if prime // or not the single digit function check(n) { // Calls function which // returns sum till // single digit n = recDigSum(n); // Checking prime if (n == 2 || n == 3 || n == 5 || n == 7) document.write( "Yes" ); else document.write( "No" ); } // Driver code let n = 5602; check(n); // This code is contributed by susmitakundugoaldanga </script> |
Output:
No
This article is contributed by Twinkle Bajaj. If you like neveropen and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!