Monday, January 13, 2025
Google search engine
HomeData Modelling & AIRectangle with minimum possible difference between the length and the width

Rectangle with minimum possible difference between the length and the width

Given an integer area, the task is to find the length and breadth of a rectangle with the given area such that the difference between the length and the breadth is the minimum possible.

Examples:  

Input: area = 99 
Output: l = 11, b = 9 
All possible rectangles (l, b) are (99, 1), (33, 3) and (11, 9) 
And the one with the minimum |l – b| is (11, 9)

Input: area = 25 
Output: l = 5, b = 5 

Approach: The task is to find two integers l and b such that l * b = area and |l – b| are as minimal as possible. Factorization can be used to solve the problem, but doing just simple factorization from 1 to N will take a long time to get the required output for larger values of N
To overcome this, just iterate up to. Considering             < l ? N, then for all values of l, b will always be             .

Below is the implementation of the above approach:

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to print the length (l)
// and breadth (b) of the rectangle
// having area = N and |l - b| as
// minimum as possible
void find_rectangle(int area)
{
    int l, b;
    int M = sqrt(area), ans;
 
    for (int i = M; i >= 1; i--) {
 
        // i is a factor
        if (area % i == 0) {
 
            // l >= sqrt(area) >= i
            l = (area / i);
 
            // so here l is +ve always
            b = i;
            break;
        }
    }
 
    // Here l and b are length and
    // breadth of the rectangle
    cout << "l = " << l << ", b = "
         << b << endl;
}
 
// Driver code
int main()
{
    int area = 99;
    find_rectangle(area);
    return 0;
}


Java




// Java implementation of the approach
class GFG {
 
    // Function to print the length (l)
    // and breadth (b) of the rectangle
    // having area = N and |l - b| as
    // minimum as possible
    static void find_rectangle(int area)
    {
        int l = 0, b = 0;
        int M = (int)Math.sqrt(area), ans;
 
        for (int i = M; i >= 1; i--) {
 
            // i is a factor
            if (area % i == 0) {
 
                // l >= sqrt(area) >= i
                l = (area / i);
 
                // so here l is +ve always
                b = i;
                break;
            }
        }
 
        // Here l and b are length and
        // breadth of the rectangle
        System.out.println("l = " + l + ", b = " + b);
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int area = 99;
        find_rectangle(area);
    }
}
 
// This code is contributed by Ita_c.


Python3




# Python3 implementation of the approach
import math as mt
 
# Function to print the length (l)
# and breadth (b) of the rectangle
# having area = N and |l - b| as
# minimum as possible
def find_rectangle(area):
 
    l, b = 0, 0
    M = mt.ceil(mt.sqrt(area))
    ans = 0
 
    for i in range(M, 0, -1):
 
        # i is a factor
        if (area % i == 0):
 
            # l >= sqrt(area) >= i
            l = (area // i)
 
            # so here l is + ve always
            b = i
            break
         
    # Here l and b are length and
    # breadth of the rectangle
    print("l =", l, ", b =", b)
 
# Driver code
area = 99
find_rectangle(area)
 
# This code is contributed by
# Mohit kumar 29


C#




// C# implementation of the approach
using System;
class GFG {
 
    // Function to print the length (l)
    // and breadth (b) of the rectangle
    // having area = N and |l - b| as
    // minimum as possible
    static void find_rectangle(int area)
    {
        int l = 0, b = 0;
        int M = (int)Math.Sqrt(area);
 
        for (int i = M; i >= 1; i--) {
 
            // i is a factor
            if (area % i == 0) {
 
                // l >= sqrt(area) >= i
                l = (area / i);
 
                // so here l is +ve always
                b = i;
                break;
            }
        }
 
        // Here l and b are length and
        // breadth of the rectangle
        Console.WriteLine("l = " + l + ", b = " + b);
    }
 
    // Driver code
    public static void Main()
    {
        int area = 99;
        find_rectangle(area);
    }
}
 
// This code is contributed by Mukul Singh.


PHP




<?php
// Php implementation of the approach
 
// Function to print the length (l)
// and breadth (b) of the rectangle
// having area = N and |l - b| as
// minimum as possible
function find_rectangle($area)
{
    $M = floor(sqrt($area));
 
    for ($i = $M; $i >= 1; $i--)
    {
 
        // i is a factor
        if ($area % $i == 0)
        {
 
            // l >= sqrt(area) >= i
            $l = floor($area / $i);
 
            // so here l is +ve always
            $b = $i ;
            break;
        }
    }
 
    // Here l and b are length and
    // breadth of the rectangle
    echo "l = ", $l, ", b = ", $b, "\n";
}
 
// Driver code
$area = 99;
find_rectangle($area);
 
// This code is contributed by Ryuga
?>


Javascript




<script>
 
// Javascript implementation of the approach
 
    // Function to print the length (l)
    // and breadth (b) of the rectangle
    // having area = N and |l - b| as
    // minimum as possible
    function find_rectangle(area)
    {
        let l = 0, b = 0;
        let M = Math.floor(Math.sqrt(area)), ans;
 
        for (let i = M; i >= 1; i--) {
 
            // i is a factor
            if (area % i == 0) {
 
                // l >= sqrt(area) >= i
                l = Math.floor(area / i);
 
                // so here l is +ve always
                b = i;
                break;
            }
        }
 
        // Here l and b are length and
        // breadth of the rectangle
        document.write("l = " + l + ", b = " + b);
    }
 
// Driver code
 
    let area = 99;
    find_rectangle(area);
     
</script>


Output: 

l = 11, b = 9

 

Time Complexity: O(\sqrt{N}   )
Auxiliary Space: O(1)

Below is a simple implementation.  

CPP




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to print the length (l)
// and breadth (b) of the rectangle
// having area = N and |l - b| as
// minimum as possible
void find_rectangle(int area)
{
    for (int i = ceil(sqrt(area)); i <= area; i++) {
        if (area / i * i == area) {
            printf("%d %d", i, area / i);
            return;
        }
    }
}
 
// Driver code
int main()
{
    int area = 99;
    find_rectangle(area);
    return 0;
}


Java




// Java implementation of the approach
import java.io.*;
class GFG {
    // Function to print the length (l)
    // and breadth (b) of the rectangle
    // having area = N and |l - b| as
    // minimum as possible
    static void find_rectangle(int area)
    {
        for(int i = (int)Math.ceil(Math.sqrt(area)); i <= area; i++)
        {
            if(area / i * i == area)
            {
                System.out.println(i + " " + (int)(area / i));
                return;
            }
        }
    }
   
    // Driver code
    public static void main (String[] args)
    {
        int area = 99;
        find_rectangle(area);       
    }
}
 
// This code is contributed by rag2127


Python3




# Python3 implementation of the approach
import math
 
# Function to print the length (l)
# and breadth (b) of the rectangle
# having area = N and |l - b| as
# minimum as possible
def find_rectangle(area):
    for i in range(int(math.ceil(math.sqrt(area))) , area + 1):
        if((int(area / i) * i) == area):
            print(i, int(area / i))
            return
 
# Driver code
area = 99
find_rectangle(area)
 
# This code is contributed by avanitrachhadiya2155


C#




// C# implementation of the approach
using System;
class GFG
{
 
  // Function to print the length (l)
  // and breadth (b) of the rectangle
  // having area = N and |l - b| as
  // minimum as possible
  static void find_rectangle(int area)
  {
    for(int i = (int)Math.Ceiling(Math.Sqrt(area)); i <= area; i++)
    {
      if(area / i * i == area)
      {
        Console.WriteLine(i + " " + (int)(area / i));
        return;
      }
    }
  }
 
  // Driver code
  static void Main()
  {
    int area = 99;
    find_rectangle(area);
  }
}
 
// This code is contributed by divyeshrabadiya07.


Javascript




<script>
// Javascript implementation of the approach
 
// Function to print the length (l)
// and breadth (b) of the rectangle
// having area = N and |l - b| as
// minimum as possible
function find_rectangle(are)
{
    for(let i = Math.floor(Math.ceil(Math.sqrt(area))); i <= area; i++)
        {
            if(Math.floor(area / i) * i == area)
            {
                document.write(i + " " + Math.floor(area / i));
                return;
            }
        }
}
 
 // Driver code
let area = 99;
find_rectangle(area);  
 
 
 
// This code is contributed by unknown2108
</script>


Output: 

11 9

 

Time Complexity: O(log(area)), due to inbuild function sqrt()
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments