Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIRearrange and update array elements as specified by the given queries

Rearrange and update array elements as specified by the given queries

Given an array arr[] of size N and queries Q[][], the task is to perform the following types of queries on the given array. 0: Left shift the array by one position.

  • 1: Right shift the array by one position.
  • 2 X Y: Update the value of arr[X] = Y.
  • 3 X: Print arr[X].

Example:

Input: arr[]={1, 2, 3, 4, 5}, Q[][]={{0}, {1}, {3, 1}, {2, 2, 54}, {3, 2}}.
Output:4 54
Explanation: 
Query1: The array arr[] modifies to {2, 3, 4, 5, 1} 
Query2: The array arr[] modifies to {1, 2, 3, 4, 5} 
Query3: Print the value of arr[1] i.e. 2 
Query4: The array arr[] modifies to {1, 54, 3, 4, 5} 
Query5: Print the value of arr[2], i.e. 54.

Input: arr[]={1}, Q[][]={{0}, {1}, {2, 0, 54}, {3, 0}}
Output: 54

Approach: The problem can be solved using Deque(Double Ended queue) to perform the insert and delete operation at the front and back of the queue in O(1). Follow the below steps to solve the problem.

  1. Create a double-ended Queue, dq.
  2. Push all elements of the array arr[] to dq.
  3. For the query of type 0(Left Shift), pop an element from the front of dq and push the element to the back of dq.
  4. For the query of type 1(Right Shift), pop an element from the back of dq and push the element to the front of dq.
  5. For the query of type 2, update dq[X] = Y.
  6. For the query of type 3, print dq[X].

Below is the implementation of the above approach:

C++




// C++ program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to perform the
// given operations
void Queries(int arr[], int N,
             vector<vector<int> >& Q)
{
 
    // Dequeue to store the
    // array elements
    deque<int> dq;
 
    // Insert all element of
    // the array into the dequeue
    for (int i = 0; i < N; i++) {
        dq.push_back(arr[i]);
    }
 
    // Stores the size of the queue
    int sz = Q.size();
 
    // Traverse each query
    for (int i = 0; i < sz; i++) {
 
        // Query for left shift.
        if (Q[i][0] == 0) {
 
            // Extract the element at
            // the front of the queue
            int front = dq[0];
 
            // Pop the element at
            // the front of the queue
            dq.pop_front();
 
            // Push the element at
            // the back of the queue
            dq.push_back(front);
        }
 
        // Query for right shift
        else if (Q[i][0] == 1) {
 
            // Extract the element at
            // the back of the queue
            int back = dq[N - 1];
 
            // Pop the element at
            // the back of the queue
            dq.pop_back();
 
            // Push the element at
            // the front of the queue
            dq.push_front(back);
        }
 
        // Query for update
        else if (Q[i][0] == 2) {
 
            dq[Q[i][1]] = Q[i][2];
        }
 
        // Query to get the value
        else {
            cout << dq[Q[i][1]] << " ";
        }
    }
}
 
// Driver Code
int main()
{
 
    int arr[] = { 1, 2, 3, 4, 5 };
    int N = sizeof(arr) / sizeof(arr[0]);
    vector<vector<int> > Q;
 
    // All possible Queries
    Q = { { 0 }, { 1 }, { 3, 1 },
          { 2, 2, 54 }, { 3, 2 } };
 
    Queries(arr, N, Q);
    return 0;
}


Java




// Java program to implement
// the above approach
import java.util.*;
class GFG{
 
// Function to perform the
// given operations
static void Queries(int arr[], int N,
                    int [][]Q)
{
  // Dequeue to store the
  // array elements
  Vector<Integer> dq = new Vector<>();
 
  // Insert all element of
  // the array into the dequeue
  for (int i = 0; i < N; i++)
  {
    dq.add(arr[i]);
  }
 
  // Stores the size of the queue
  int sz = Q.length;
 
  // Traverse each query
  for (int i = 0; i < sz; i++)
  {
    // Query for left shift.
    if (Q[i][0] == 0)
    {
      // Extract the element at
      // the front of the queue
      int front = dq.get(0);
 
      // Pop the element at
      // the front of the queue
      dq.remove(0);
 
      // Push the element at
      // the back of the queue
      dq.add(front);
    }
 
    // Query for right shift
    else if (Q[i][0] == 1)
    {
      // Extract the element at
      // the back of the queue
      int back = dq.elementAt(dq.size() - 1);
 
      // Pop the element at
      // the back of the queue
      dq.remove(dq.size() - 1);
 
      // Push the element at
      // the front of the queue
      dq.add(0, back);
    }
 
    // Query for update
    else if (Q[i][0] == 2)
    {
      dq.set(Q[i][1], Q[i][2]);
    }
 
    // Query to get the value
    else
    {
      System.out.print(dq.get(Q[i][1]) + " ");
    }
  }
}
 
// Driver Code
public static void main(String[] args)
{
  int arr[] = {1, 2, 3, 4, 5};
  int N = arr.length;
   
  // Vector<Vector<Integer>
  // > Q = new Vector<>();
 
  // All possible Queries
  int [][]Q = {{0}, {1}, {3, 1},
               {2, 2, 54}, {3, 2}};
  Queries(arr, N, Q);
}
}
 
// This code is contributed by Princi Singh


Python3




# Python3 program to implement
# the above approach
from collections import deque
 
# Function to perform the
# given operations
def Queries(arr, N, Q):
 
    # Dequeue to store the
    # array elements
    dq = deque()
 
    # Insert all element of
    # the array into the dequeue
    for i in range(N):
        dq.append(arr[i])
 
    # Stores the size of the queue
    sz = len(Q)
 
    # Traverse each query
    for i in range(sz):
 
        # Query for left shift.
        if (Q[i][0] == 0):
 
            # Extract the element at
            # the front of the queue
            front = dq[0]
 
            # Pop the element at
            # the front of the queue
            dq.popleft()
 
            # Push the element at
            # the back of the queue
            dq.appendleft(front)
 
        # Query for right shift
        elif (Q[i][0] == 1):
 
            # Extract the element at
            # the back of the queue
            back = dq[N - 1]
 
            # Pop the element at
            # the back of the queue
            dq.popleft()
 
            # Push the element at
            # the front of the queue
            dq.appendleft(back)
 
        # Query for update
        elif (Q[i][0] == 2):
            dq[Q[i][1]] = Q[i][2]
 
        # Query to get the value
        else:
            print(dq[Q[i][1]], end = " ")
 
# Driver Code
if __name__ == '__main__':
 
    arr = [ 1, 2, 3, 4, 5 ]
    N = len(arr)
 
    # All possible Queries
    Q = [ [ 0 ], [ 1 ], [ 3, 1 ],
          [ 2, 2, 54 ], [ 3, 2 ] ]
 
    Queries(arr, N, Q)
 
# This code is contributed by mohit kumar 29


Javascript




<script>
// Javascript program to implement
// the above approach
 
// Function to perform the
// given operations
function Queries(arr,N,Q)
{
  // Dequeue to store the
  // array elements
  let dq = [];
  
  // Insert all element of
  // the array into the dequeue
  for (let i = 0; i < N; i++)
  {
    dq.push(arr[i]);
  }
  
  // Stores the size of the queue
  let sz = Q.length;
  
  // Traverse each query
  for (let i = 0; i < sz; i++)
  {
    // Query for left shift.
    if (Q[i][0] == 0)
    {
      // Extract the element at
      // the front of the queue
      let front = dq[0];
  
      // Pop the element at
      // the front of the queue
      dq.shift();
  
      // Push the element at
      // the back of the queue
      dq.push(front);
    }
  
    // Query for right shift
    else if (Q[i][0] == 1)
    {
      // Extract the element at
      // the back of the queue
      let back = dq[dq.length - 1];
  
      // Pop the element at
      // the back of the queue
      dq.pop();
  
      // Push the element at
      // the front of the queue
      dq.unshift( back);
    }
  
    // Query for update
    else if (Q[i][0] == 2)
    {
      dq[Q[i][1]] = Q[i][2];
    }
  
    // Query to get the value
    else
    {
      document.write(dq[Q[i][1]] + " ");
    }
  }
}
 
// Driver Code
let arr=[1, 2, 3, 4, 5];
let N = arr.length;
    
// Vector<Vector<Integer>
// > Q = new Vector<>();
 
// All possible Queries
let Q = [[0], [1], [3, 1],
[2, 2, 54], [3, 2]];
Queries(arr, N, Q);
 
 
// This code is contributed by unknown2108
</script>


C#




using System;
 
public class Program
{
// Function to perform the given operations
public static void Queries(int[] arr, int N, int[][] Q)
{
// Dequeue to store the array elements
int[] dq = new int[N];
 
    // Insert all element of the array into the dequeue
    for (int i = 0; i < N; i++)
    {
        dq[i] = arr[i];
    }
 
    // Stores the size of the queue
    int sz = Q.Length;
 
    // Traverse each query
    for (int i = 0; i < sz; i++)
    {
        // Query for left shift.
        if (Q[i][0] == 0)
        {
            // Extract the element at the front of the queue
            int front = dq[0];
 
            // Shift all elements one position to the left
            for (int j = 1; j < N; j++)
            {
                dq[j - 1] = dq[j];
            }
 
            // Put the extracted element at the back of the queue
            dq[N - 1] = front;
        }
 
        // Query for right shift
        else if (Q[i][0] == 1)
        {
            // Extract the element at the back of the queue
            int back = dq[N - 1];
 
            // Shift all elements one position to the right
            for (int j = N - 1; j > 0; j--)
            {
                dq[j] = dq[j - 1];
            }
 
            // Put the extracted element at the front of the queue
            dq[0] = back;
        }
 
        // Query for update
        else if (Q[i][0] == 2)
        {
            dq[Q[i][1]] = Q[i][2];
        }
 
        // Query to get the value
        else
        {
            Console.Write(dq[Q[i][1]] + " ");
        }
    }
}
 
// Driver Code
public static void Main()
{
    int[] arr = { 1, 2, 3, 4, 5 };
    int N = arr.Length;
 
    // All possible Queries
    int[][] Q = { new int[] { 0 }, new int[] { 1 }, new int[] { 3, 1 },
                  new int[] { 2, 2, 54 }, new int[] { 3, 2 } };
    Queries(arr, N, Q);
}
}


Output: 

2 54

Time Complexity: O(N+|Q|)
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments