Given an array of integers arr[] and an integer x, the task is to sort all the elements of the array which are multiples of x in decreasing order in their relative positions i.e. positions of the other elements must not be affected.
Examples:
Input: arr[] = {10, 5, 8, 2, 15}, x = 5
Output: 15 10 8 2 5
We rearrange all multiples of 5 (i.e. 10, 5 and 15) in decreasing order in their relative positions, keeping other elements same.Input: arr[] = {100, 12, 25, 50, 5}, x = 5
Output: 100 12 50 25 5
Approach:
- Traverse the array and check if the number is multiple of x. If it is, store it in a vector.
- Then, sort the vector in decreasing order.
- Again traverse the array and replace the elements which are multiples of 5 with the vector elements one by one.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to sort all the // multiples of x from the // array in decreasing order void sortMultiples( int arr[], int n, int x) { vector< int > v; // Insert all multiples of x to a vector for ( int i = 0; i < n; i++) if (arr[i] % x == 0) v.push_back(arr[i]); // Sort the vector in descending sort(v.begin(), v.end(), std::greater< int >()); int j = 0; // update the array elements for ( int i = 0; i < n; i++) { if (arr[i] % x == 0) arr[i] = v[j++]; } } // Utility function to print the array void printArray( int arr[], int N) { // Print the array for ( int i = 0; i < N; i++) { cout << arr[i] << " " ; } } // Driver code int main() { int arr[] = { 125, 3, 15, 6, 100, 5 }; int x = 5; int n = sizeof (arr) / sizeof (arr[0]); sortMultiples(arr, n, x); printArray(arr, n); return 0; } |
Java
// Java implementation of the approach import java.util.*; class GFG { // Function to sort all the // multiples of x from the // array in decreasing order static void sortMultiples( int arr[], int n, int x) { Vector<Integer> v = new Vector<Integer>(); // Insert all multiples of x to a vector for ( int i = 0 ; i < n; i++) { if (arr[i] % x == 0 ) { v.add(arr[i]); } } // Sort the vector in descending Collections.sort(v, Collections.reverseOrder()); int j = 0 ; // update the array elements for ( int i = 0 ; i < n; i++) { if (arr[i] % x == 0 ) { arr[i] = v.get(j++); } } } // Utility function to print the array static void printArray( int arr[], int N) { // Print the array for ( int i = 0 ; i < N; i++) { System.out.print(arr[i] + " " ); } } // Driver code public static void main(String[] args) { int arr[] = { 125 , 3 , 15 , 6 , 100 , 5 }; int x = 5 ; int n = arr.length; sortMultiples(arr, n, x); printArray(arr, n); } } // This code has been contributed by 29AjayKumar |
Python3
# Python3 implementation of the approach # Function to sort all the # multiples of x from the # array in decreasing order def sortMultiples(arr, n, x) : v = [] # Insert all multiples of x # to a vector for i in range (n) : if (arr[i] % x = = 0 ) : v.append(arr[i]) # Sort the vector in descending v.sort(reverse = True ) j = 0 # update the array elements for i in range (n) : if (arr[i] % x = = 0 ) : arr[i] = v[j] j + = 1 # Utility function to print the array def printArray(arr, N) : # Print the array for i in range (N) : print (arr[i], end = " " ) # Driver code if __name__ = = "__main__" : arr = [ 125 , 3 , 15 , 6 , 100 , 5 ] x = 5 n = len (arr) sortMultiples(arr, n, x) printArray(arr, n) # This code is contributed by Ryuga |
C#
// C# implementation of the approach using System; using System.Collections.Generic; class GFG { // Function to sort all the // multiples of x from the // array in decreasing order static void sortMultiples( int []arr, int n, int x) { List< int > v = new List< int >(); // Insert all multiples of x to a vector for ( int i = 0; i < n; i++) { if (arr[i] % x == 0) { v.Add(arr[i]); } } // Sort the vector in descending v.Sort(); v.Reverse(); int j = 0; // update the array elements for ( int i = 0; i < n; i++) { if (arr[i] % x == 0) { arr[i] = v[j++]; } } } // Utility function to print the array static void printArray( int []arr, int N) { // Print the array for ( int i = 0; i < N; i++) { Console.Write(arr[i] + " " ); } } // Driver code public static void Main() { int []arr = {125, 3, 15, 6, 100, 5}; int x = 5; int n = arr.Length; sortMultiples(arr, n, x); printArray(arr, n); } } /* This code contributed by PrinciRaj1992 */ |
PHP
<?php // PHP implementation of the approach // Function to sort all the multiples // of x from the array in decreasing order function sortMultiples(& $arr , $n , $x ) { $v = array (); // Insert all multiples of x to a vector for ( $i = 0; $i < $n ; $i ++) if ( $arr [ $i ] % $x == 0) array_push ( $v , $arr [ $i ]); // Sort the vector in descending rsort( $v ); $j = 0; // update the array elements for ( $i = 0; $i < $n ; $i ++) { if ( $arr [ $i ] % $x == 0) $arr [ $i ] = $v [ $j ++]; } } // Utility function to print the array function printArray( $arr , $N ) { // Print the array for ( $i = 0; $i < $N ; $i ++) { echo $arr [ $i ] . " " ; } } // Driver code $arr = array (125, 3, 15, 6, 100, 5 ); $x = 5; $n = sizeof( $arr ); sortMultiples( $arr , $n , $x ); printArray( $arr , $n ); // This code is contributed by ita_c ?> |
Javascript
<script> // JavaScript implementation of the approach // Function to sort all the // multiples of x from the // array in decreasing order function sortMultiples(arr, n, x) { var v = []; // Insert all multiples of x to a vector for ( var i = 0; i < n; i++) if (arr[i] % x == 0) v.push(arr[i]); // Sort the vector in descending v.sort((a, b) => b - a); var j = 0; // update the array elements for ( var i = 0; i < n; i++) { if (arr[i] % x == 0) arr[i] = v[j++]; } } // Utility function to print the array function printArray(arr, N) { // Print the array for ( var i = 0; i < N; i++) { document.write(arr[i] + " " ); } } // Driver code var arr = [ 125, 3, 15, 6, 100, 5 ]; var x = 5; var n = arr.length; sortMultiples(arr, n, x); printArray(arr, n); // This code is contributed by rdtank </script> |
125 3 100 6 15 5
Complexity Analysis:
- Time Complexity: O(nlogn)
- Auxiliary Space: O(n)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!