Saturday, January 4, 2025
Google search engine

Rare Numbers

Given an integer N, the task is to check if N is a Rare Number.

Rare Number is a number N which is non-palindromic and N+rev(N) and N-rev(N) are both perfect squares where rev(N) is the reverse of the number N. For Example rev(65) = 56 
 

Examples:  

Input: N = 65 
Output: Yes 
65 – 56 = 9 and 65 + 56 = 121 are both perfect squares

Input: N = 10 
Output: No  

Approach: The idea is to check if N is a palindromic number, then return false. And if it is non-palindromic then just check whether N + rev(N) and N – rev(N) are both perfect squares or not.

Below is the implementation of the above approach: 

C++




// C++ implementation to check if
// N is a Rare number
#include<bits/stdc++.h>
using namespace std;
 
 
// Iterative function to
// reverse digits of num
int reverseDigits(int num)
{
    int rev_num = 0;
    while(num > 0)
    {
        rev_num = rev_num*10 + num%10;
        num = num/10;
    }
    return rev_num;
}
 
// Function to check if N
// is perfect square
bool isPerfectSquare(long double x)
{  
  // Find floating point value of 
  // square root of x.
  long double sr = sqrt(x);
   
  // If square root is an integer
  return ((sr - floor(sr)) == 0);
}
 
// Function to check if N is an
// Rare number
bool isRare(int N)
{
    // Find reverse of N
    int reverseN = reverseDigits(N);
 
    // Number should be non-palindromic
    if(reverseN == N)
        return false;
     
    return isPerfectSquare(N + reverseN) &&
                isPerfectSquare(N - reverseN);
}
 
// Driver Code
int main()
{
    int n = 65;
    if (isRare(n))
        cout << "Yes";
    else
        cout << "No";
    return 0;
}


Java




// Java implementation to check if N
// is a Rare number
class GFG{
 
// Iterative function to
// reverse digits of num
static int reverseDigits(int num)
{
    int rev_num = 0;
    while(num > 0)
    {
        rev_num = rev_num * 10 + num % 10;
        num = num / 10;
    }
    return rev_num;
}
 
// Function to check if N
// is perfect square
static boolean isPerfectSquare(double x)
{
 
    // Find floating point value of
    // square root of x.
    double sr = Math.sqrt(x);
     
    // If square root is an integer
    return ((sr - Math.floor(sr)) == 0);
}
 
// Function to check if N is an
// Rare number
static boolean isRare(int N)
{
     
    // Find reverse of N
    int reverseN = reverseDigits(N);
 
    // Number should be non-palindromic
    if(reverseN == N)
        return false;
     
    return isPerfectSquare(N + reverseN) &&
           isPerfectSquare(N - reverseN);
}
 
// Driver code
public static void main(String[] args)
{
    int n = 65;
 
    if (isRare(n))
    {
        System.out.println("Yes");
    }
    else
    {
        System.out.println("No");
    }
}
}
 
// This code is contributed by shubham


Python3




# Python3 implementation to check if
# N is a Rare number
import math
 
# Iterative function to
# reverse digits of num
def reverseDigits(num):
    rev_num = 0
    while(num > 0):
        rev_num = rev_num * 10 + num % 10
        num = num // 10
 
    return rev_num
 
# Function to check if N
# is perfect square
def isPerfectSquare(x):
     
    # Find floating point value of
    # square root of x.
    sr = math.sqrt(x)
 
    # If square root is an integer
    return ((sr - int(sr)) == 0)
 
# Function to check if N is an
# Rare number
def isRare(N):
     
    # Find reverse of N
    reverseN = reverseDigits(N)
 
    # Number should be non-palindromic
    if(reverseN == N):
        return False
 
    return (isPerfectSquare(N + reverseN) and
            isPerfectSquare(N - reverseN))
 
# Driver Code
N = 65
if (isRare(N)):
    print("Yes")
else:
    print("No")
 
# This code is contributed by Vishal Maurya


C#




// C# implementation to check if N
// is a Rare number
using System;
class GFG{
  
// Iterative function to
// reverse digits of num
static int reverseDigits(int num)
{
    int rev_num = 0;
    while(num > 0)
    {
        rev_num = rev_num * 10 + num % 10;
        num = num / 10;
    }
    return rev_num;
}
  
// Function to check if N
// is perfect square
static bool isPerfectSquare(double x)
{
  
    // Find floating point value of
    // square root of x.
    double sr = Math.Sqrt(x);
      
    // If square root is an integer
    return ((sr - Math.Floor(sr)) == 0);
}
  
// Function to check if N is an
// Rare number
static bool isRare(int N)
{
      
    // Find reverse of N
    int reverseN = reverseDigits(N);
  
    // Number should be non-palindromic
    if(reverseN == N)
        return false;
      
    return isPerfectSquare(N + reverseN) &&
           isPerfectSquare(N - reverseN);
}
  
// Driver code
public static void Main(String[] args)
{
    int n = 65;
  
    if (isRare(n))
    {
        Console.WriteLine("Yes");
    }
    else
    {
        Console.WriteLine("No");
    }
}
}
 
// This code is contributed by Amit Katiyar


Javascript




<script>
// Javascript implementation to check if N
// is a Rare number
 
    // Iterative function to
    // reverse digits of num
    function reverseDigits( num)
    {
        let rev_num = 0;
        while (num > 0)
        {
            rev_num = rev_num * 10 + num % 10;
            num = parseInt(num / 10);
        }
        return rev_num;
    }
 
    // Function to check if N
    // is perfect square
    function isPerfectSquare( x)
    {
 
        // Find floating point value of
        // square root of x.
        let sr = Math.sqrt(x);
 
        // If square root is an integer
        return ((sr - Math.floor(sr)) == 0);
    }
 
    // Function to check if N is an
    // Rare number
    function isRare( N)
    {
 
        // Find reverse of N
        let reverseN = reverseDigits(N);
 
        // Number should be non-palindromic
        if (reverseN == N)
            return false;
 
        return isPerfectSquare(N + reverseN) && isPerfectSquare(N - reverseN);
    }
 
    // Driver code    
    let n = 65;
 
    if (isRare(n)) {
        document.write("Yes");
    } else {
        document.write("No");
    }
 
// This code is contributed by todaysgaurav
</script>


Output: 

Yes

Time Complexity: O(N1/2)
References: OEIS
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments