Friday, January 10, 2025
Google search engine
HomeData Modelling & AIRange sum queries for anticlockwise rotations of Array by K indices

Range sum queries for anticlockwise rotations of Array by K indices

Given an array arr consisting of N elements and Q queries of the following two types: 

  • 1 K: For this type of query, the array needs to be rotated by K indices anticlockwise from its current state.
  • 2 L R: For this query, the sum of the array elements present in the indices [L, R] needs to be calculated.

Example:

Input: arr = { 1, 2, 3, 4, 5, 6 }, query = { {2, 1, 3}, {1, 3}, {2, 0, 3}, {1, 4}, {2, 3, 5} } 
Output: 

16 
12 
Explanation: 
For the 1st query {2, 1, 3} -> Sum of the elements in the indices [1, 3] = 2 + 3 + 4 = 9. 
For the 2nd query {1, 3} -> Modified array after anti-clockwise rotation by 3 places is { 4, 5, 6, 1, 2, 3 } 
For the 3rd query {2, 0, 3} -> Sum of the elements in the indices [0, 3] = 4 + 5 + 6 + 1 = 16. 
For the 4th query {1, 4} -> Modified array after anti-clockwise rotation by 4 places is { 2, 3, 4, 5, 6, 1 } 
For the 5th query {2, 3, 5} -> Sum of the elements in the indices [3, 5] = 5 + 6 + 1 = 12. 

Approach: 

  • Create a prefix array which is double the size of the arr and copy the element at the ith index of arr to ith and N + ith index of prefix for all i in [0, N).
  • Precompute the prefix sum for every index of that array and store in prefix.
  • Set the pointer start at 0 to denote the starting index of the initial array.
  • For query of type 1, shift start to
((start + K) % N)th position
  • For query of type 2, calculate 
prefix[start + R]
 - prefix[start + L- 1 ]
  • if start + L >= 1 or print the value of 
prefix[start + R]
  • otherwise.

Below code is the implementation of the above approach: 

C++




// C++ Program to calculate range sum
// queries for anticlockwise
// rotations of array by K
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to execute the queries
void rotatedSumQuery(
    int arr[], int n,
    vector<vector<int> >& query,
    int Q)
{
    // Construct a new array
    // of size 2*N to store
    // prefix sum of every index
    int prefix[2 * n];
 
    // Copy elements to the new array
    for (int i = 0; i < n; i++) {
        prefix[i] = arr[i];
        prefix[i + n] = arr[i];
    }
 
    // Calculate the prefix sum
    // for every index
    for (int i = 1; i < 2 * n; i++)
        prefix[i] += prefix[i - 1];
 
    // Set start pointer as 0
    int start = 0;
 
    for (int q = 0; q < Q; q++) {
 
        // Query to perform
        // anticlockwise rotation
        if (query[q][0] == 1) {
            int k = query[q][1];
            start = (start + k) % n;
        }
 
        // Query to answer range sum
        else if (query[q][0] == 2) {
 
            int L, R;
            L = query[q][1];
            R = query[q][2];
 
            // If pointing to 1st index
            if (start + L == 0)
 
                // Display the sum upto start + R
                cout << prefix[start + R] << endl;
 
            else
 
                // Subtract sum upto start + L - 1
                // from sum upto start + R
                cout << prefix[start + R]
                            - prefix[start + L - 1]
                     << endl;
        }
    }
}
 
// Driver code
int main()
{
 
    int arr[] = { 1, 2, 3, 4, 5, 6 };
 
    // Number of query
    int Q = 5;
 
    // Store all the queries
    vector<vector<int> > query
        = { { 2, 1, 3 },
            { 1, 3 },
            { 2, 0, 3 },
            { 1, 4 },
            { 2, 3, 5 } };
 
    int n = sizeof(arr) / sizeof(arr[0]);
    rotatedSumQuery(arr, n, query, Q);
 
    return 0;
}


Java




// Java program to calculate range sum
// queries for anticlockwise
// rotations of array by K
class GFG{
 
// Function to execute the queries
static void rotatedSumQuery(int arr[], int n,
                            int [][]query, int Q)
{
     
    // Construct a new array
    // of size 2*N to store
    // prefix sum of every index
    int []prefix = new int[2 * n];
 
    // Copy elements to the new array
    for(int i = 0; i < n; i++)
    {
        prefix[i] = arr[i];
        prefix[i + n] = arr[i];
    }
 
    // Calculate the prefix sum
    // for every index
    for(int i = 1; i < 2 * n; i++)
        prefix[i] += prefix[i - 1];
 
    // Set start pointer as 0
    int start = 0;
 
    for(int q = 0; q < Q; q++)
    {
 
        // Query to perform
        // anticlockwise rotation
        if (query[q][0] == 1)
        {
            int k = query[q][1];
            start = (start + k) % n;
        }
 
        // Query to answer range sum
        else if (query[q][0] == 2)
        {
            int L, R;
            L = query[q][1];
            R = query[q][2];
 
            // If pointing to 1st index
            if (start + L == 0)
 
                // Display the sum upto start + R
                System.out.print(prefix[start + R] + "\n");
 
            else
 
                // Subtract sum upto start + L - 1
                // from sum upto start + R
                System.out.print(prefix[start + R] -
                                 prefix[start + L - 1] +
                                 "\n");
        }
    }
}
 
// Driver code
public static void main(String[] args)
{
    int arr[] = { 1, 2, 3, 4, 5, 6 };
 
    // Number of query
    int Q = 5;
 
    // Store all the queries
    int [][]query = { { 2, 1, 3 },
                      { 1, 3 },
                      { 2, 0, 3 },
                      { 1, 4 },
                      { 2, 3, 5 } };
 
    int n = arr.length;
    rotatedSumQuery(arr, n, query, Q);
}
}
 
// This code is contributed by Rohit_ranjan


Python3




# Python3 program to calculate range sum
# queries for anticlockwise
# rotations of the array by K
 
# Function to execute the queries
def rotatedSumQuery(arr, n, query, Q):
 
    # Construct a new array
    # of size 2*N to store
    # prefix sum of every index
    prefix = [0] * (2 * n)
 
    # Copy elements to the new array
    for i in range(n):
        prefix[i] = arr[i]
        prefix[i + n] = arr[i]
 
    # Calculate the prefix sum
    # for every index
    for i in range(1, 2 * n):
        prefix[i] += prefix[i - 1];
 
    # Set start pointer as 0
    start = 0;
 
    for q in range(Q):
 
        # Query to perform
        # anticlockwise rotation
        if (query[q][0] == 1):
            k = query[q][1]
            start = (start + k) % n;
 
        # Query to answer range sum
        elif (query[q][0] == 2):
            L = query[q][1]
            R = query[q][2]
 
            # If pointing to 1st index
            if (start + L == 0):
 
                # Display the sum upto start + R
                print(prefix[start + R])
 
            else:
 
                # Subtract sum upto start + L - 1
                # from sum upto start + R
                print(prefix[start + R]-
                      prefix[start + L - 1])
         
# Driver code
arr = [ 1, 2, 3, 4, 5, 6 ];
 
# Number of query
Q = 5
 
# Store all the queries
query= [ [ 2, 1, 3 ],
         [ 1, 3 ],
         [ 2, 0, 3 ],
         [ 1, 4 ],
         [ 2, 3, 5 ] ]
 
n = len(arr);
rotatedSumQuery(arr, n, query, Q);
 
# This code is contributed by ankitkumar34


C#




// C# program to calculate range sum
// queries for anticlockwise
// rotations of array by K
using System;
 
class GFG{
 
// Function to execute the queries
static void rotatedSumQuery(int[] arr, int n,
                            int[,] query, int Q)
{
     
    // Construct a new array
    // of size 2*N to store
    // prefix sum of every index
    int[] prefix = new int[2 * n];
 
    // Copy elements to the new array
    for(int i = 0; i < n; i++)
    {
        prefix[i] = arr[i];
        prefix[i + n] = arr[i];
    }
 
    // Calculate the prefix sum
    // for every index
    for(int i = 1; i < 2 * n; i++)
        prefix[i] += prefix[i - 1];
 
    // Set start pointer as 0
    int start = 0;
 
    for(int q = 0; q < Q; q++)
    {
 
        // Query to perform
        // anticlockwise rotation
        if (query[q, 0] == 1)
        {
            int k = query[q, 1];
            start = (start + k) % n;
        }
 
        // Query to answer range sum
        else if (query[q, 0] == 2)
        {
            int L, R;
            L = query[q, 1];
            R = query[q, 2];
 
            // If pointing to 1st index
            if (start + L == 0)
 
                // Display the sum upto start + R
                Console.Write(prefix[start + R] + "\n");
 
            else
 
                // Subtract sum upto start + L - 1
                // from sum upto start + R
                Console.Write(prefix[start + R] -
                              prefix[start + L - 1] +
                              "\n");
        }
    }
}
 
// Driver code
public static void Main()
{
    int[] arr = new int[] { 1, 2, 3, 4, 5, 6 };
 
    // Number of query
    int Q = 5;
 
    // Store all the queries
    int[,] query = new int[,] { { 2, 1, 3 },
                                { 1, 3, 0 },
                                { 2, 0, 3 },
                                { 1, 4, 0 },
                                { 2, 3, 5 } };
 
    int n = arr.Length;
    rotatedSumQuery(arr, n, query, Q);
}
}
 
// This code is contributed by sanjoy_62


Javascript




<script>
     
// Javascript program to calculate range sum
// queries for anticlockwise
// rotations of array by K
 
// Function to execute the queries
function rotatedSumQuery(arr, n,
                            query, Q)
{
       
    // Construct a new array
    // of size 2*N to store
    // prefix sum of every index
    let prefix = [];
   
    // Copy elements to the new array
    for(let i = 0; i < n; i++)
    {
        prefix[i] = arr[i];
        prefix[i + n] = arr[i];
    }
   
    // Calculate the prefix sum
    // for every index
    for(let i = 1; i < 2 * n; i++)
        prefix[i] += prefix[i - 1];
   
    // Set start pointer as 0
    let start = 0;
   
    for(let q = 0; q < Q; q++)
    {
   
        // Query to perform
        // anticlockwise rotation
        if (query[q][0] == 1)
        {
            let k = query[q][1];
            start = (start + k) % n;
        }
   
        // Query to answer range sum
        else if (query[q][0] == 2)
        {
            let L, R;
            L = query[q][1];
            R = query[q][2];
   
            // If pointing to 1st index
            if (start + L == 0)
   
                // Display the sum upto start + R
                document.write(prefix[start + R] + "<br/>");
   
            else
   
                // Subtract sum upto start + L - 1
                // from sum upto start + R
                document.write(prefix[start + R] -
                                 prefix[start + L - 1] +
                                 "<br/>");
        }
    }
}
     
// Driver code
 
    let arr = [ 1, 2, 3, 4, 5, 6 ];
   
    // Number of query
    let Q = 5;
   
    // Store all the queries
    let query = [[ 2, 1, 3 ],
                      [ 1, 3 ],
                      [ 2, 0, 3 ],
                      [ 1, 4 ],
                      [ 2, 3, 5 ]];
   
    let n = arr.length;
    rotatedSumQuery(arr, n, query, Q);
     
    // This code is contributed by susmitakundugoaldanga.
</script>


Output: 

9
16
12

 

Time Complexity: O(N+Q), where Q is the number of queries, and as each query will cost O (1) time for Q queries time complexity would be O(N+Q).

Auxiliary Space: O(N), as we are using  extra space for prefix.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments