Saturday, October 18, 2025
HomeData Modelling & AIRange maximum query using Sparse Table

Range maximum query using Sparse Table

Given an array arr[], the task is to answer queries to find the maximum of all the elements in the index range arr[L…R].
Examples: 
 

Input: arr[] = {6, 7, 4, 5, 1, 3}, q[][] = {{0, 5}, {3, 5}, {2, 4}}
Output:
7
5
5

Input: arr[] = {3, 34, 1}, q[][] = {{1, 2}}
Output:
34

 

Approach: A similar problem to answer range minimum queries has been discussed here. The same approach can be modified to answer range maximum queries. Below is the modification: 
 

// Maximum of single element subarrays is same
// as the only element
lookup[i][0] = arr[i]

// If lookup[0][2] ?  lookup[4][2], 
// then lookup[0][3] = lookup[0][2]
If lookup[i][j-1] ? lookup[i+2j-1-1][j-1]
   lookup[i][j] = lookup[i][j-1]

// If lookup[0][2] <  lookup[4][2], 
// then lookup[0][3] = lookup[4][2]
Else 
   lookup[i][j] = lookup[i+2j-1-1][j-1] 

Below is the implementation of the above approach:
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
#define MAX 500
 
// lookup[i][j] is going to store maximum
// value in arr[i..j]. Ideally lookup table
// size should not be fixed and should be
// determined using n Log n. It is kept
// constant to keep code simple.
int lookup[MAX][MAX];
 
// Fills lookup array lookup[][] in bottom up manner
void buildSparseTable(int arr[], int n)
{
    // Initialize M for the intervals with length 1
    for (int i = 0; i < n; i++)
        lookup[i][0] = arr[i];
 
    // Compute values from smaller to bigger intervals
    for (int j = 1; (1 << j) <= n; j++) {
 
        // Compute maximum value for all intervals with
        // size 2^j
        for (int i = 0; (i + (1 << j) - 1) < n; i++) {
 
            // For arr[2][10], we compare arr[lookup[0][7]]
            // and arr[lookup[3][10]]
            if (lookup[i][j - 1] > lookup[i + (1 << (j - 1))][j - 1])
                lookup[i][j] = lookup[i][j - 1];
            else
                lookup[i][j] = lookup[i + (1 << (j - 1))][j - 1];
        }
    }
}
 
// Returns maximum of arr[L..R]
int query(int L, int R)
{
    // Find highest power of 2 that is smaller
    // than or equal to count of elements in given
    // range
    // For [2, 10], j = 3
    int j = (int)log2(R - L + 1);
 
    // Compute maximum of last 2^j elements with first
    // 2^j elements in range
    // For [2, 10], we compare arr[lookup[0][3]] and
    // arr[lookup[3][3]]
    if (lookup[L][j] >= lookup[R - (1 << j) + 1][j])
        return lookup[L][j];
 
    else
        return lookup[R - (1 << j) + 1][j];
}
 
// Driver program
int main()
{
    int a[] = { 7, 2, 3, 0, 5, 10, 3, 12, 18 };
    int n = sizeof(a) / sizeof(a[0]);
 
    buildSparseTable(a, n);
 
    cout << query(0, 4) << endl;
    cout << query(4, 7) << endl;
    cout << query(7, 8) << endl;
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
class GFG {
 
    static final int MAX = 500;
 
    // lookup[i][j] is going to store maximum
    // value in arr[i..j]. Ideally lookup table
    // size should not be fixed and should be
    // determined using n Log n. It is kept
    // constant to keep code simple.
    static int lookup[][] = new int[MAX][MAX];
 
    // Fills lookup array lookup[][] in bottom up manner
    static void buildSparseTable(int arr[], int n)
    {
        // Initialize M for the intervals with length 1
        for (int i = 0; i < n; i++)
            lookup[i][0] = arr[i];
 
        // Compute values from smaller to bigger intervals
        for (int j = 1; (1 << j) <= n; j++) {
 
            // Compute maximum value for all intervals with
            // size 2^j
            for (int i = 0; (i + (1 << j) - 1) < n; i++) {
 
                // For arr[2][10], we compare arr[lookup[0][7]]
                // and arr[lookup[3][10]]
                if (lookup[i][j - 1] > lookup[i + (1 << (j - 1))][j - 1])
                    lookup[i][j] = lookup[i][j - 1];
                else
                    lookup[i][j] = lookup[i + (1 << (j - 1))][j - 1];
            }
        }
    }
 
    // Returns maximum of arr[L..R]
    static int query(int L, int R)
    {
        // Find highest power of 2 that is smaller
        // than or equal to count of elements in given
        // range
        // For [2, 10], j = 3
        int j = (int)Math.log(R - L + 1);
 
        // Compute maximum of last 2^j elements with first
        // 2^j elements in range
        // For [2, 10], we compare arr[lookup[0][3]] and
        // arr[lookup[3][3]]
        if (lookup[L][j] >= lookup[R - (1 << j) + 1][j])
            return lookup[L][j];
 
        else
            return lookup[R - (1 << j) + 1][j];
    }
 
    // Driver program
    public static void main(String args[])
    {
        int a[] = { 7, 2, 3, 0, 5, 10, 3, 12, 18 };
        int n = a.length;
 
        buildSparseTable(a, n);
 
        System.out.println(query(0, 4));
        System.out.println(query(4, 7));
        System.out.println(query(7, 8));
    }
}


Python3




# Python3 implementation of the approach
from math import log
MAX = 500
 
# lookup[i][j] is going to store maximum
# value in arr[i..j]. Ideally lookup table
# size should not be fixed and should be
# determined using n Log n. It is kept
# constant to keep code simple.
lookup = [[0 for i in range(MAX)]
             for i in range(MAX)]
 
# Fills lookup array lookup[][]
# in bottom up manner
def buildSparseTable(arr, n):
 
    # Initialize M for the intervals
    # with length 1
    for i in range(n):
        lookup[i][0] = arr[i]
 
    # Compute values from smaller
    # to bigger intervals
    i, j = 0, 1
    while (1 << j) <= n:
 
        # Compute maximum value for
        # all intervals with size 2^j
        while (i + (1 << j) - 1) < n:
 
            # For arr[2][10], we compare arr[lookup[0][7]]
            # and arr[lookup[3][10]]
            if (lookup[i][j - 1] >
                lookup[i + (1 << (j - 1))][j - 1]):
                lookup[i][j] = lookup[i][j - 1]
            else:
                lookup[i][j] = lookup[i + (1 << (j - 1))][j - 1]
            i += 1
        j += 1
 
# Returns maximum of arr[L..R]
def query(L, R):
     
    # Find highest power of 2 that is smaller
    # than or equal to count of elements in given
    # range
    # For [2, 10], j = 3
    j = int(log(R - L + 1))
 
    # Compute maximum of last 2^j elements with first
    # 2^j elements in range
    # For [2, 10], we compare arr[lookup[0][3]] and
    # arr[lookup[3][3]]
    if (lookup[L][j] >= lookup[R - (1 << j) + 1][j]):
        return lookup[L][j]
 
    else:
        return lookup[R - (1 << j) + 1][j]
 
# Driver Code
a = [7, 2, 3, 0, 5, 10, 3, 12, 18]
n = len(a)
 
buildSparseTable(a, n);
 
print(query(0, 4))
print(query(4, 7))
print(query(7, 8))
 
# This code is contributed by Mohit Kumar


C#




// Java implementation of the approach
using System;
class GFG {
 
    static int MAX = 500;
 
    // lookup[i][j] is going to store maximum
    // value in arr[i..j]. Ideally lookup table
    // size should not be fixed and should be
    // determined using n Log n. It is kept
    // constant to keep code simple.
    static int[, ] lookup = new int[MAX, MAX];
 
    // Fills lookup array lookup[][] in bottom up manner
    static void buildSparseTable(int[] arr, int n)
    {
        // Initialize M for the intervals with length 1
        for (int i = 0; i < n; i++)
            lookup[i, 0] = arr[i];
 
        // Compute values from smaller to bigger intervals
        for (int j = 1; (1 << j) <= n; j++) {
 
            // Compute maximum value for all intervals with
            // size 2^j
            for (int i = 0; (i + (1 << j) - 1) < n; i++) {
 
                // For arr[2][10], we compare arr[lookup[0][7]]
                // and arr[lookup[3][10]]
                if (lookup[i, j - 1] > lookup[i + (1 << (j - 1)), j - 1])
                    lookup[i, j] = lookup[i, j - 1];
                else
                    lookup[i, j] = lookup[i + (1 << (j - 1)), j - 1];
            }
        }
    }
 
    // Returns maximum of arr[L..R]
    static int query(int L, int R)
    {
        // Find highest power of 2 that is smaller
        // than or equal to count of elements in given
        // range
        // For [2, 10], j = 3
        int j = (int)Math.Log(R - L + 1);
 
        // Compute maximum of last 2^j elements with first
        // 2^j elements in range
        // For [2, 10], we compare arr[lookup[0][3]] and
        // arr[lookup[3][3]]
        if (lookup[L, j] >= lookup[R - (1 << j) + 1, j])
            return lookup[L, j];
 
        else
            return lookup[R - (1 << j) + 1, j];
    }
 
    // Driver program
    public static void Main(String[] args)
    {
        int[] a = { 7, 2, 3, 0, 5, 10, 3, 12, 18 };
        int n = a.Length;
 
        buildSparseTable(a, n);
 
        Console.WriteLine(query(0, 4));
        Console.WriteLine(query(4, 7));
        Console.WriteLine(query(7, 8));
    }
}


Javascript




<script>
// Javascript implementation of the approach
let MAX = 500;
 
// lookup[i][j] is going to store maximum
// value in arr[i..j]. Ideally lookup table
// size should not be fixed and should be
// determined using n Log n. It is kept
// constant to keep code simple.
let lookup = new Array();
for(let i = 0; i < MAX; i++)
{
    let temp = [];
    for(let j = 0; j < MAX; j++)
    {
        temp.push([])
    }
    lookup.push(temp)
}
 
// Fills lookup array lookup[][] in bottom up manner
function buildSparseTable(arr, n)
{
 
    // Initialize M for the letervals with length 1
    for (let i = 0; i < n; i++)
        lookup[i][0] = arr[i];
 
    // Compute values from smaller to bigger letervals
    for (let j = 1; (1 << j) <= n; j++) {
 
        // Compute maximum value for all letervals with
        // size 2^j
        for (let i = 0; (i + (1 << j) - 1) < n; i++) {
 
            // For arr[2][10], we compare arr[lookup[0][7]]
            // and arr[lookup[3][10]]
            if (lookup[i][j - 1] > lookup[i + (1 << (j - 1))][j - 1])
                lookup[i][j] = lookup[i][j - 1];
            else
                lookup[i][j] = lookup[i + (1 << (j - 1))][j - 1];
        }
    }
}
 
// Returns maximum of arr[L..R]
function query(L, R)
{
 
    // Find highest power of 2 that is smaller
    // than or equal to count of elements in given
    // range
    // For [2, 10], j = 3
    let j = Math.floor(Math.log2(R - L + 1));
 
    // Compute maximum of last 2^j elements with first
    // 2^j elements in range
    // For [2, 10], we compare arr[lookup[0][3]] and
    // arr[lookup[3][3]]
    if (lookup[L][j] >= lookup[R - (1 << j) + 1][j])
        return lookup[L][j];
    else
        return lookup[R - (1 << j) + 1][j];
}
 
// Driver program
    let a = [ 7, 2, 3, 0, 5, 10, 3, 12, 18 ];
    let n = a.length;
 
    buildSparseTable(a, n);
 
    document.write(query(0, 4) + "<br>");
    document.write(query(4, 7) + "<br>");
    document.write(query(7, 8) + "<br>");
 
// This code is contributed by _saurabh_jaiswal.
</script>


Output: 

7
12
18

 

So sparse table method supports query operation in O(1) time with O(n Log n) preprocessing time and O(n Log n) space.
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Dominic
32361 POSTS0 COMMENTS
Milvus
88 POSTS0 COMMENTS
Nango Kala
6728 POSTS0 COMMENTS
Nicole Veronica
11892 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11954 POSTS0 COMMENTS
Shaida Kate Naidoo
6852 POSTS0 COMMENTS
Ted Musemwa
7113 POSTS0 COMMENTS
Thapelo Manthata
6805 POSTS0 COMMENTS
Umr Jansen
6801 POSTS0 COMMENTS