Given an array arr[] consisting of N integers, consisting only of 0‘s initially and queries Q[][] of the form {L, R, C}, the task for each query is to update the subarray [L, R] with value C. Print the final array generated after performing all the queries.
Examples:
Input: N = 5, Q = {{1, 4, 1}, {3, 5, 2}, {2, 4, 3}}
Output: 1 3 3 3 2
Explanation:
Initially, the array is {0, 0, 0, 0, 0}
Query 1 modifies the array to {1, 1, 1, 1, 0}
Query 2 modifies the array to {1, 1, 2, 2, 2}
Query 3 modifies the array to {1, 3, 3, 3, 2}Input: N = 3, Q = {{1, 2, 1}, {2, 3, 2}}
Output: 1 2 2
Explanation:
Initially, the array is {0, 0, 0}
Query 1 modifies the array to {1, 1, 0}
Query 2 modifies the array to {1, 2, 2}
Approach: The idea is to use Disjoint Set Union to solve the problem.Follow the steps below to solve the problem:
- Initially, all the array elements will be considered as separate sets and parent of itself and will store the next array element with value 0.
- First, store the query and process the queries in reverse order from last to first because the value assigned to each set will be final.
- After processing the first query, elements with the changed value will point to the next element. This way on executing a query, we only have to assign values to the non-updated sets in the subarray [l, r]. All other cells already contain their final values.
- Find the left-most non-updated set, and update it, and with the pointer, move to the next non-updated set to the right.
Below is the implementation of the above approach:
C++
// C++ Program to implement // the above approach #include <bits/stdc++.h> using namespace std; // Maximum possible size of array #define MAX_NODES 100005 // Stores the parent of each element int parent[MAX_NODES]; // Stores the final array values int final_val[MAX_NODES]; // Structure to store queries struct query { int l, r, c; }; // Function to initialize the // parent of each vertex void make_set( int v) { // Initially parent // of each node points // to itself parent[v] = v; } // Function to find the representative // of the set which contain element v int find_set( int v) { if (v == parent[v]) return v; // Path compression return parent[v] = find_set(parent[v]); } // Function to assign a // parent to each element void Initialize( int n) { for ( int i = 0; i <= n; i++) make_set(i + 1); } // Function to process the queries void Process(query Q[], int q) { for ( int i = q - 1; i >= 0; i--) { int l = Q[i].l, r = Q[i].r, c = Q[i].c; for ( int v = find_set(l); v <= r; v = find_set(v)) { final_val[v] = c; parent[v] = v + 1; } } } // Function to print the final array void PrintAns( int n) { for ( int i = 1; i <= n; i++) { cout << final_val[i] << " " ; } cout << endl; } // Driver Code int main() { int n = 5; // Set all the elements as the // parent of itself using make_set Initialize(n); int q = 3; query Q[q]; // Store the queries Q[0].l = 1, Q[0].r = 4, Q[0].c = 1; Q[1].l = 3, Q[1].r = 5, Q[1].c = 2; Q[2].l = 2, Q[2].r = 4, Q[2].c = 3; // Process the queries Process(Q, q); // Print the required array PrintAns(n); return 0; } |
Java
// Java program to implement // the above approach import java.util.*; class GFG{ // Maximum possible size of array static final int MAX_NODES = 100005 ; // Stores the parent of each element static int []parent = new int [MAX_NODES]; // Stores the final array values static int []final_val = new int [MAX_NODES]; // Structure to store queries static class query { int l, r, c; }; // Function to initialize the // parent of each vertex static void make_set( int v) { // Initially parent // of each node points // to itself parent[v] = v; } // Function to find the representative // of the set which contain element v static int find_set( int v) { if (v == parent[v]) return v; // Path compression return parent[v] = find_set(parent[v]); } // Function to assign a // parent to each element static void Initialize( int n) { for ( int i = 0 ; i <= n; i++) make_set(i + 1 ); } // Function to process the queries static void Process(query Q[], int q) { for ( int i = q - 1 ; i >= 0 ; i--) { int l = Q[i].l, r = Q[i].r, c = Q[i].c; for ( int v = find_set(l); v <= r; v = find_set(v)) { final_val[v] = c; parent[v] = v + 1 ; } } } // Function to print the final array static void PrintAns( int n) { for ( int i = 1 ; i <= n; i++) { System.out.print(final_val[i] + " " ); } System.out.println(); } // Driver Code public static void main(String[] args) { int n = 5 ; // Set all the elements as the // parent of itself using make_set Initialize(n); int q = 3 ; query []Q = new query[q]; for ( int i = 0 ; i < Q.length; i++) Q[i] = new query(); // Store the queries Q[ 0 ].l = 1 ; Q[ 0 ].r = 4 ; Q[ 0 ].c = 1 ; Q[ 1 ].l = 3 ; Q[ 1 ].r = 5 ; Q[ 1 ].c = 2 ; Q[ 2 ].l = 2 ; Q[ 2 ].r = 4 ; Q[ 2 ].c = 3 ; // Process the queries Process(Q, q); // Print the required array PrintAns(n); } } // This code is contributed by amal kumar choubey |
Python3
# Python3 program to implement # the above approach MAX_NODES = 100005 # Stores the parent of each element parent = [ 0 ] * MAX_NODES # Stores the final array values final_val = [ 0 ] * MAX_NODES # Structure to store queries # Function to initialize the # parent of each vertex def make_set(v): # Initially parent # of each node points # to itself parent[v] = v # Function to find the representative # of the set which contain element v def find_set(v): if (v = = parent[v]): return v # Path compression parent[v] = find_set(parent[v]) return parent[v] # Function to assign a # parent to each element def Initialize(n): for i in range (n + 1 ): make_set(i + 1 ) # Function to process the queries def Process(Q, q): for i in range (q - 1 , - 1 , - 1 ): l = Q[i][ 0 ] r = Q[i][ 1 ] c = Q[i][ 2 ] v = find_set(l) while v < = r: final_val[v] = c parent[v] = v + 1 v = find_set(v) # Function to print the final array def PrintAns(n): for i in range ( 1 , n + 1 ): print (final_val[i], end = " " ) # Driver Code if __name__ = = '__main__' : n = 5 # Set all the elements as the # parent of itself using make_set Initialize(n) q = 3 Q = [[ 0 for i in range ( 3 )] for i in range (q)] # Store the queries Q[ 0 ][ 0 ] = 1 Q[ 0 ][ 1 ] = 4 Q[ 0 ][ 2 ] = 1 Q[ 1 ][ 0 ] = 3 Q[ 1 ][ 1 ] = 5 Q[ 1 ][ 2 ] = 2 Q[ 2 ][ 0 ] = 2 Q[ 2 ][ 1 ] = 4 Q[ 2 ][ 2 ] = 3 # Process the queries Process(Q, q) # Print the required array PrintAns(n) # This code is contributed by mohit kumar 29 |
C#
// C# program to implement // the above approach using System; class GFG{ // Maximum possible size of array static readonly int MAX_NODES = 100005; // Stores the parent of each element static int []parent = new int [MAX_NODES]; // Stores the readonly array values static int []final_val = new int [MAX_NODES]; // Structure to store queries class query { public int l, r, c; }; // Function to initialize the // parent of each vertex static void make_set( int v) { // Initially parent // of each node points // to itself parent[v] = v; } // Function to find the representative // of the set which contain element v static int find_set( int v) { if (v == parent[v]) return v; // Path compression return parent[v] = find_set(parent[v]); } // Function to assign a // parent to each element static void Initialize( int n) { for ( int i = 0; i <= n; i++) make_set(i + 1); } // Function to process the queries static void Process(query []Q, int q) { for ( int i = q - 1; i >= 0; i--) { int l = Q[i].l, r = Q[i].r, c = Q[i].c; for ( int v = find_set(l); v <= r; v = find_set(v)) { final_val[v] = c; parent[v] = v + 1; } } } // Function to print the readonly array static void PrintAns( int n) { for ( int i = 1; i <= n; i++) { Console.Write(final_val[i] + " " ); } Console.WriteLine(); } // Driver Code public static void Main(String[] args) { int n = 5; // Set all the elements as the // parent of itself using make_set Initialize(n); int q = 3; query []Q = new query[q]; for ( int i = 0; i < Q.Length; i++) Q[i] = new query(); // Store the queries Q[0].l = 1; Q[0].r = 4; Q[0].c = 1; Q[1].l = 3; Q[1].r = 5; Q[1].c = 2; Q[2].l = 2; Q[2].r = 4; Q[2].c = 3; // Process the queries Process(Q, q); // Print the required array PrintAns(n); } } // This code is contributed by amal kumar choubey |
Javascript
<script> // Javascript program to implement // the above approach // Maximum possible size of array let MAX_NODES = 100005; // Stores the parent of each element let parent = new Array(MAX_NODES); // Stores the final array values let final_val = new Array(MAX_NODES); // Structure to store queries class query { constructor() { let l, r, c; } } // Function to initialize the // parent of each vertex function make_set(v) { // Initially parent // of each node points // to itself parent[v] = v; } // Function to find the representative // of the set which contain element v function find_set(v) { if (v == parent[v]) return v; // Path compression return parent[v] = find_set(parent[v]); } // Function to assign a // parent to each element function Initialize(n) { for (let i = 0; i <= n; i++) make_set(i + 1); } // Function to process the queries function Process(Q,q) { for (let i = q - 1; i >= 0; i--) { let l = Q[i].l, r = Q[i].r, c = Q[i].c; for (let v = find_set(l); v <= r; v = find_set(v)) { final_val[v] = c; parent[v] = v + 1; } } } // Function to print the final array function PrintAns(n) { for (let i = 1; i <= n; i++) { document.write(final_val[i] + " " ); } document.write( "<br>" ); } // Driver Code let n = 5; // Set all the elements as the // parent of itself using make_set Initialize(n); let q = 3; let Q = new Array(q); for (let i = 0; i < Q.length; i++) Q[i] = new query(); // Store the queries Q[0].l = 1; Q[0].r = 4; Q[0].c = 1; Q[1].l = 3; Q[1].r = 5; Q[1].c = 2; Q[2].l = 2; Q[2].r = 4; Q[2].c = 3; // Process the queries Process(Q, q); // Print the required array PrintAns(n); // This code is contributed by unknown2108 </script> |
1 3 3 3 2
Time complexity: O(log N)
Auxiliary Space: O(MAX_NODES)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!