Given two arrays arr[] and q[] consisting of N integers, the task is for each query q[i] is to determine the number of times the maximum array element occurs in the subarray [q[i], arr[N – 1]].
Examples:
Input: arr[] = {5, 4, 5, 3, 2}, q[] = {1, 2, 3, 4, 5}
Output: 2 1 1 1 1
Explanation:
For the first query index start from 1. The subarray is [5, 4, 5, 3, 2], the maximum value is 5 and it’s occurrence in subarray is 2.
For the second query index start from 2. The subarray is [4, 5, 3, 2], the maximum value is 5 and it’s occurrence in subarray is 1.
For the third query index start from 3. The subarray is [5, 3, 2], the maximum value is 5 and it’s occurrence in subarray is 1.
For the forth query index start from 4. The subarray is [3, 2], the maximum value is 3 and it’s occurrence in subarray is 1.
For the fifth query index start from 5. The subarray is [2], the maximum value is 2 and it’s occurrence in subarray is 1.Input: arr[] = {2, 1, 2}, q[] = {1, 2, 3}
Output: 2 1 1
Naive Approach: The simplest approach is to traverse the array and find the maximum array element. Now, for each query q[i], traverse the subarray [q[i], arr[N – 1]], and print the count of occurrences of the maximum element in the subarray.
Follow the steps below to implement the above idea:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find occurrence of // max element in given subarray void FreqOfMaxElement(vector< int > arr, vector< int > q) { // Traverse over each query for ( int i = 0; i < q.size(); i++) { // Find the starting index of each query int start = q[i] - 1; int count = 0; // Find the maximum element in the range of each // query int maxx = *max_element(arr.begin() + start, arr.end()); // Find the occurrences of maxx element for ( int j = start; j < arr.size(); j++) { if (arr[j] == maxx) { count++; } } // Print the count cout << count << " " ; } } // Driver Code int main() { vector< int > arr = { 5, 4, 5, 3, 2 }; vector< int > q = { 1, 2, 3, 4, 5 }; // Function Call FreqOfMaxElement(arr, q); } |
Java
import java.util.*; import java.io.*; public class Gfg { // Function to find occurrence of // max element in given subarray public static void FreqOfMaxElement(List<Integer> arr, List<Integer> q) { // Traverse over each query for ( int i = 0 ; i < q.size(); i++) { // Find the starting index of each query int start = q.get(i) - 1 ; int count = 0 ; // Find the maximum element in the range of each // query int maxx = Collections.max(arr.subList(start, arr.size())); // Find the occurrences of maxx element for ( int j = start; j < arr.size(); j++) { if (arr.get(j) == maxx) { count++; } } // Print the count System.out.print(count + " " ); } } // Driver Code public static void main(String[] args) { List<Integer> arr = Arrays.asList( 5 , 4 , 5 , 3 , 2 ); List<Integer> q = Arrays.asList( 1 , 2 , 3 , 4 , 5 ); // Function Call FreqOfMaxElement(arr, q); } } |
Python3
from collections import Counter def FreqOfMaxElement(arr, q): # Traverse over each query for i in range ( len (q)): # Find the starting index of each query start = q[i] - 1 count = 0 # Find the maximum element in the range of each query maxx = max (arr[start:]) # Find the occurrences of maxx element for j in range (start, len (arr)): if arr[j] = = maxx: count + = 1 # Print the count print (count, end = " " ) # Driver Code if __name__ = = "__main__" : arr = [ 5 , 4 , 5 , 3 , 2 ] q = [ 1 , 2 , 3 , 4 , 5 ] FreqOfMaxElement(arr, q) # This code is contributed by aadityaburujwale. |
C#
// C# program for the above approach using System; using System.Linq; using System.Collections.Generic; class GFG { // Function to find occurrence of // max element in given subarray static void FreqOfMaxElement( int [] arr, int [] q) { // Traverse over each query for ( int i = 0; i < q.Length; i++) { // Find the starting index of each query int start = q[i] - 1; int count = 0; // Find the maximum element in the range of each // query int maxx=-1; for ( int j=start; j<arr.Length; j++) maxx=Math.Max(maxx, arr[j]); // Find the occurrences of maxx element for ( int j = start; j < arr.Length; j++) { if (arr[j] == maxx) { count++; } } // Print the count Console.Write(count + " " ); } } // Driver Code public static void Main ( string [] args) { int [] arr = { 5, 4, 5, 3, 2 }; int [] q = { 1, 2, 3, 4, 5 }; // Function Call FreqOfMaxElement(arr, q); } } |
Javascript
// Javascript program for the above approach // Function to find occurrence of // max element in given subarray function FreqOfMaxElement(arr, q) { // Traverse over each query for (let i = 0; i < q.length; i++) { // Find the starting index of each query let start = q[i] - 1; let count = 0; // Find the maximum element in the range of each // query let maxx=Number.MIN_SAFE_INTEGER; for (let i=start; i<arr.length; i++) { maxx=Math.max(arr[i], maxx); } // Find the occurrences of maxx element for (let j = start; j < arr.length; j++) { if (arr[j] == maxx) { count++; } } // Print the count document.write(count); document.write( " " ); } } // Driver Code let arr = [ 5, 4, 5, 3, 2 ]; let q = [ 1, 2, 3, 4, 5 ]; // Function Call FreqOfMaxElement(arr, q); |
2 1 1 1 1
Time Complexity: O(N*Q), where N and Q are the lengths of the given array and query respectively.
Auxiliary Space: O(1)
Efficient Approach: To optimize the above approach, the idea is to use Hashing. Below are the steps:
- Create an array maxFreqVec[] to store the occurrence of the max element from given index q[i] to N.
- Traverse the array arr[] from the right and keep track of the maximum element in the array and update the array maxFreqVec[] at that index with the occurrence of that maximum element.
- After the above steps, traverse over the array q[] and print the value maxFreqVec[q[i] – 1] as the maximum element in each subarray for each query.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include<bits/stdc++.h> using namespace std; // Function to find occurrence of // max element in given subarray void FreqOfMaxElement(vector< int > arr, vector< int > q) { // Store the frequency of maximum // element vector< int > maxFreqVec(arr.size()); int maxSoFar = INT_MIN; int maxFreq = 0; // Traverse over the array arr[] // from right to left for ( int i = arr.size() - 1; i >= 0; i--) { // If curr element is greater // than maxSofar if (arr[i] > maxSoFar) { // Reset maxSofar and maxFreq maxSoFar = arr[i]; maxFreq = 1; } // If curr is equal to maxSofar else if (arr[i] == maxSoFar) { // Increment the maxFreq maxFreq++; } // Update maxFreqVec[i] maxFreqVec[i] = maxFreq; } // Print occurrence of maximum // element for each query for ( int k : q) { cout << maxFreqVec[k - 1] << " " ; } } // Driver Code int main() { vector< int > arr = { 5, 4, 5, 3, 2 }; vector< int > q = { 1, 2, 3, 4, 5 }; // Function Call FreqOfMaxElement(arr, q); } // This code is contributed by mohit kumar 29 |
Java
// Java program for the above approach import java.util.*; import java.lang.*; class GFG { // Function to find occurrence of // max element in given subarray static void FreqOfMaxElement( int [] arr, int [] q) { // Store the frequency of maximum // element int [] maxFreqVec = new int [arr.length]; int maxSoFar = Integer.MIN_VALUE; int maxFreq = 0 ; // Traverse over the array arr[] // from right to left for ( int i = arr.length - 1 ; i >= 0 ; i--) { // If curr element is greater // than maxSofar if (arr[i] > maxSoFar) { // Reset maxSofar and maxFreq maxSoFar = arr[i]; maxFreq = 1 ; } // If curr is equal to maxSofar else if (arr[i] == maxSoFar) { // Increment the maxFreq maxFreq++; } // Update maxFreqVec[i] maxFreqVec[i] = maxFreq; } // Print occurrence of maximum // element for each query for ( int k : q) { System.out.print( maxFreqVec[k - 1 ] + " " ); } } // Driver Code public static void main(String[] args) { int [] arr = { 5 , 4 , 5 , 3 , 2 }; int [] q = { 1 , 2 , 3 , 4 , 5 }; // Function Call FreqOfMaxElement(arr, q); } } |
Python3
# Python3 program for # the above approach import sys; # Function to find occurrence # of max element in given # subarray def FreqOfMaxElement(arr, q): # Store the frequency of # maximum element maxFreqVec = [ 0 ] * ( len (arr)); maxSoFar = - sys.maxsize; maxFreq = 0 ; # Traverse over the array # arr from right to left for i in range ( len (arr) - 1 , - 1 , - 1 ): # If curr element is # greater than maxSofar if (arr[i] > maxSoFar): # Reset maxSofar # and maxFreq maxSoFar = arr[i]; maxFreq = 1 ; # If curr is equal to # maxSofar elif (arr[i] = = maxSoFar): # Increment the # maxFreq maxFreq + = 1 ; # Update maxFreqVec[i] maxFreqVec[i] = maxFreq; # Print occurrence of maximum # element for each query for i in range ( 0 , len (q)): print (maxFreqVec[q[i] - 1 ], end = " " ); # Driver Code if __name__ = = '__main__' : arr = [ 5 , 4 , 5 , 3 , 2 ]; q = [ 1 , 2 , 3 , 4 , 5 ]; # Function Call FreqOfMaxElement(arr, q); # This code is contributed by shikhasingrajput |
C#
// C# program for the // above approach using System; class GFG{ // Function to find occurrence of // max element in given subarray static void FreqOfMaxElement( int [] arr, int [] q) { // Store the frequency of // maximum element int [] maxFreqVec = new int [arr.Length]; int maxSoFar = Int32.MinValue; int maxFreq = 0; // Traverse over the array arr[] // from right to left for ( int i = arr.Length - 1; i >= 0; i--) { // If curr element is greater // than maxSofar if (arr[i] > maxSoFar) { // Reset maxSofar and maxFreq maxSoFar = arr[i]; maxFreq = 1; } // If curr is equal to maxSofar else if (arr[i] == maxSoFar) { // Increment the maxFreq maxFreq++; } // Update maxFreqVec[i] maxFreqVec[i] = maxFreq; } // Print occurrence of maximum // element for each query foreach ( int k in q) { Console.Write(maxFreqVec[k - 1] + " " ); } } // Driver code static void Main() { int [] arr = {5, 4, 5, 3, 2}; int [] q = {1, 2, 3, 4, 5}; // Function Call FreqOfMaxElement(arr, q); } } // This code is contributed by divyeshrabadiya07 |
Javascript
<script> // Javascript program for the above approach // Function to find occurrence of // max element in given subarray function FreqOfMaxElement(arr, q) { // Store the frequency of maximum // element var maxFreqVec = new Array(arr.length); var maxSoFar = -1000000000; var maxFreq = 0; // Traverse over the array arr[] // from right to left for ( var i = arr.length - 1; i >= 0; i--) { // If curr element is greater // than maxSofar if (arr[i] > maxSoFar) { // Reset maxSofar and maxFreq maxSoFar = arr[i]; maxFreq = 1; } // If curr is equal to maxSofar else if (arr[i] == maxSoFar) { // Increment the maxFreq maxFreq++; } // Update maxFreqVec[i] maxFreqVec[i] = maxFreq; } // Print occurrence of maximum // element for each query q.forEach(k => { document.write( maxFreqVec[k - 1] + " " ); }); } // Driver Code var arr = [ 5, 4, 5, 3, 2 ]; var q = [ 1, 2, 3, 4, 5 ]; // Function Call FreqOfMaxElement(arr, q); // This code is contributed by rutvik_56 </script> |
2 1 1 1 1
Time Complexity: O(N)
Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!