Wednesday, January 8, 2025
Google search engine
HomeData Modelling & AIQueries to count distinct Binary Strings of all lengths from N to...

Queries to count distinct Binary Strings of all lengths from N to M satisfying given properties

Given a K and a matrix Q[][] consisting of queries of the form {N, M}, the task for each query is to count the number of strings possible of all lengths from Q[i][0] to Q[i][1] satisfying the following properties:  

  • The frequency of 0‘s is equal to a multiple of K.
  • Two strings are said to be different only if the frequencies of 0‘s and 1‘s are different

Since the answer can be quite large, compute the answer by mod 109 + 7.

Examples:  

Input: K = 3, Q[][] = {{1, 3}} 
Output: 4 
Explanation: 
All possible strings of length 1 : {“1”} 
All possible strings of length 2 : {“11”} 
All possible strings of length 3 : {“111”, “000”} 
Therefore, a total of 4 strings can be generated.

Input: K = 3, Q[][] = {{1, 4}, {3, 7}} 
Output: 

24 
 

Naive Approach: 
Follow the steps below to solve the problem:  

  • Initialize an array dp[] such that dp[i] denotes the number of strings possible of length i.
  • Initialize dp[0] = 1.
  • For every ith Length, at most two possibilities arise: 
    • Appending ‘1’ to the strings of length i – 1.
    • Add K 0‘s to all possible strings of length i-K.
  • Finally, for each query Q[i], print the sum of all dp[j] for Q[i][0] <= j <= Q[i][1].

Time Complexity: O(N*Q) 
Auxiliary Space: O(N)

Efficient Approach: 
The above approach can be optimized using Prefix Sum Array. Follow the steps below:  

  • Update the dp[] array by following the steps in the above approach.
  • Compute prefix sum array of the dp[] array.
  • Finally, for each query Q[i], calculate dp[Q[i][1]] – dp[Q[i][0] – 1] and print as result.

Below is the implementation of the above approach: 

C++




// C++ Program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
const int N = 1e5 + 5;
 
const int MOD = 1000000007;
 
long int dp[N];
 
// Function to calculate the
// count of possible strings
void countStrings(int K,
                  vector<vector<int> > Q)
{
    // Initialize dp[0]
    dp[0] = 1;
 
    // dp[i] represents count of
    // strings of length i
    for (int i = 1; i < N; i++) {
 
        dp[i] = dp[i - 1];
 
        // Add dp[i-k] if i>=k
        if (i >= K)
            dp[i]
                = (dp[i] + dp[i - K]) % MOD;
    }
 
    // Update Prefix Sum Array
    for (int i = 1; i < N; i++) {
        dp[i] = (dp[i] + dp[i - 1]) % MOD;
    }
 
    for (int i = 0; i < Q.size(); i++) {
        long int ans
            = dp[Q[i][1]] - dp[Q[i][0] - 1];
 
        if (ans < 0)
            ans = ans + MOD;
 
        cout << ans << endl;
    }
}
 
// Driver Code
int main()
{
 
    int K = 3;
 
    vector<vector<int> > Q
        = { { 1, 4 }, { 3, 7 } };
 
    countStrings(K, Q);
 
    return 0;
}


Java




// Java program to implement
// the above approach
import java.util.*;
 
class GFG{
 
static int N = (int)(1e5 + 5);
static int MOD = 1000000007;
static int []dp = new int[N];
 
// Function to calculate the
// count of possible Strings
static void countStrings(int K, int[][] Q)
{
     
    // Initialize dp[0]
    dp[0] = 1;
 
    // dp[i] represents count of
    // Strings of length i
    for(int i = 1; i < N; i++)
    {
        dp[i] = dp[i - 1];
 
        // Add dp[i-k] if i>=k
        if (i >= K)
            dp[i] = (dp[i] + dp[i - K]) % MOD;
    }
 
    // Update Prefix Sum Array
    for(int i = 1; i < N; i++)
    {
        dp[i] = (dp[i] + dp[i - 1]) % MOD;
    }
 
    for(int i = 0; i < Q.length; i++)
    {
        int ans = dp[Q[i][1]] - dp[Q[i][0] - 1];
 
        if (ans < 0)
            ans = ans + MOD;
 
        System.out.print(ans + "\n");
    }
}
 
// Driver Code
public static void main(String[] args)
{
    int K = 3;
 
    int [][]Q = { { 1, 4 }, { 3, 7 } };
 
    countStrings(K, Q);
}
}
 
// This code is contributed by 29AjayKumar


Python3




# Python3 program to implement
# the above approach
N = int(1e5 + 5)
MOD = 1000000007
dp = [0] * N
 
# Function to calculate the
# count of possible strings
def countStrings(K, Q):
 
    # Initialize dp[0]
    dp[0] = 1
 
    # dp[i] represents count of
    # strings of length i
    for i in range(1, N):
        dp[i] = dp[i - 1]
 
        # Add dp[i-k] if i>=k
        if(i >= K):
            dp[i] = (dp[i] + dp[i - K]) % MOD
 
    # Update Prefix Sum Array
    for i in range(1, N):
        dp[i] = (dp[i] + dp[i - 1]) % MOD
 
    for i in range(len(Q)):
        ans = dp[Q[i][1]] - dp[Q[i][0] - 1]
 
        if (ans < 0):
            ans += MOD
             
        print(ans)
 
# Driver Code
K = 3
 
Q = [ [ 1, 4 ], [ 3, 7 ] ]
 
countStrings(K, Q)
 
# This code is contributed by Shivam Singh


C#




// C# program to implement
// the above approach
using System;
class GFG{
  
static int N = (int)(1e5 + 5);
static int MOD = 1000000007;
static int []dp = new int[N];
  
// Function to calculate the
// count of possible Strings
static void countStrings(int K,
                         int[,] Q)
{    
    // Initialize dp[0]
    dp[0] = 1;
  
    // dp[i] represents count of
    // Strings of length i
    for(int i = 1; i < N; i++)
    {
        dp[i] = dp[i - 1];
  
        // Add dp[i-k] if i>=k
        if (i >= K)
            dp[i] = (dp[i] +
                     dp[i - K]) % MOD;
    }
  
    // Update Prefix Sum Array
    for(int i = 1; i < N; i++)
    {
        dp[i] = (dp[i] +
                 dp[i - 1]) % MOD;
    }
  
    for(int i = 0; i < Q.GetLength(0); i++)
    {
        int ans = dp[Q[i, 1]] -
                  dp[Q[i, 0] - 1];
  
        if (ans < 0)
            ans = ans + MOD;
  
        Console.Write(ans + "\n");
    }
}
  
// Driver Code
public static void Main(String[] args)
{
    int K = 3;
    int [,]Q = {{1, 4}, {3, 7}};
    countStrings(K, Q);
}
}
  
// This code is contributed by 29AjayKumar


Javascript




<script>
 
// Javascript program to implement
// the above approach
let N = parseInt((1e5 + 5));
let MOD = 1000000007;
let dp = Array(N).fill(0);
 
// Function to calculate the
// count of possible Strings
function countStrings(K, Q)
{
     
    // Initialize dp[0]
    dp[0] = 1;
 
    // dp[i] represents count of
    // Strings of length i
    for(let i = 1; i < N; i++)
    {
        dp[i] = dp[i - 1];
 
        // Add dp[i-k] if i>=k
        if (i >= K)
            dp[i] = (dp[i] + dp[i - K]) % MOD;
    }
 
    // Update Prefix Sum Array
    for(let i = 1; i < N; i++)
    {
        dp[i] = (dp[i] + dp[i - 1]) % MOD;
    }
 
    for(let i = 0; i < Q.length; i++)
    {
        var ans = dp[Q[i][1]] - dp[Q[i][0] - 1];
 
        if (ans < 0)
            ans = ans + MOD;
 
        document.write(ans + "\n");
    }
}
 
// Driver Code
var K = 3;
 
let Q = [ [ 1, 4 ], [ 3, 7 ] ];
 
countStrings(K, Q);
 
// This code is contributed by gauravrajput1
 
</script>


Output: 

7
24

 

Time Complexity: O(N + Q) 
Auxiliary Space: O(N) 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments