Friday, January 10, 2025
Google search engine
HomeData Modelling & AIQueries to check whether bitwise AND of a subarray is even or...

Queries to check whether bitwise AND of a subarray is even or odd

Given an array arr[] of N positive integers, the task is to answer Q queries where each query consists of a range [L, R] and you have to check whether the bitwise AND of the elements from the given index range is even or odd.
Examples: 

Input: arr[] = {1, 1, 2, 3}, Q[][] = {{1, 2}, {0, 1}} 
Output: 
Even 
Odd 
(1 & 2) = 0 which is even. 
(1 & 1) = 1 which is odd.

Input: arr[] = {2, 1, 5, 7, 6, 8, 9}, Q[][] = {{0, 2}, {1, 2}, {2, 3}, {3, 6}} 
Output: 
Even 
Odd 
Odd 
Even 

 

Approach: 

  • The bitwise AND in an index range [L, R] will be odd if all the elements in that index range is odd otherwise, it will be even.
  • So, check whether all the elements in the index range [L, R] is odd or not.
  • In order to answer each query optimally, create an array and mark the positions where the value is odd and then take the prefix sum of this array.
  • Now, the count of odd numbers in the index range [L, R] can be calculated as pre[R] – pre[L – 1].

Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
const int MAXN = 1000005;
int even[MAXN], odd[MAXN];
 
// Function to precompute the count
// of even and odd numbers
void precompute(int arr[], int n)
{
 
    for (int i = 0; i < n; i++) {
 
        // If the current element is odd
        // then put 1 at odd[i]
        if (arr[i] % 2 == 1)
            odd[i] = 1;
 
        // If the current element is even
        // then put 1 at even[i]
        if (arr[i] % 2 == 0)
            even[i] = 1;
    }
 
    // Taking the prefix sums of these two arrays
    // so we can get the count of even and odd
    // numbers in a range [L, R] in O(1)
    for (int i = 1; i < n; i++) {
        even[i] = even[i] + even[i - 1];
        odd[i] = odd[i] + odd[i - 1];
    }
}
 
// Function that returns true if the bitwise
// AND of the subarray a[L...R] is odd
bool isOdd(int L, int R)
{
 
    // cnt will store the count of odd
    // numbers in the range [L, R]
    int cnt = odd[R];
    if (L > 0)
        cnt -= odd[L - 1];
 
    // Check if all the numbers in
    // the range are odd or not
    if (cnt == R - L + 1)
        return true;
 
    return false;
}
 
// Function to perform the queries
void performQueries(int a[], int n, int q[][2], int m)
{
    precompute(a, n);
 
    // Perform queries
    for (int i = 0; i < m; i++) {
        int L = q[i][0], R = q[i][1];
        if (isOdd(L, R))
            cout << "Odd\n";
        else
            cout << "Even\n";
    }
}
 
// Driver code
int main()
{
    int a[] = { 2, 1, 5, 7, 6, 8, 9 };
    int n = sizeof(a) / sizeof(a[0]);
 
    // Queries
    int q[][2] = { { 0, 2 }, { 1, 2 }, { 2, 3 }, { 3, 6 } };
    int m = sizeof(q) / sizeof(q[0]);
 
    performQueries(a, n, q, m);
 
    return 0;
}


Java




// Java implementation of the approach
class GFG {
 
    static final int MAXN = 1000005;
    static int even[] = new int[MAXN];
    static int odd[] = new int[MAXN];
 
    // Function to precompute the count
    // of even and odd numbers
    static void precompute(int arr[], int n)
    {
 
        for (int i = 0; i < n; i++) {
 
            // If the current element is odd
            // then put 1 at odd[i]
            if (arr[i] % 2 == 1)
                odd[i] = 1;
 
            // If the current element is even
            // then put 1 at even[i]
            if (arr[i] % 2 == 0)
                even[i] = 1;
        }
 
        // Taking the prefix sums of these two arrays
        // so we can get the count of even and odd
        // numbers in a range [L, R] in O(1)
        for (int i = 1; i < n; i++) {
            even[i] = even[i] + even[i - 1];
            odd[i] = odd[i] + odd[i - 1];
        }
    }
 
    // Function that returns true if the bitwise
    // AND of the subarray a[L...R] is odd
    static boolean isOdd(int L, int R)
    {
 
        // cnt will store the count of odd
        // numbers in the range [L, R]
        int cnt = odd[R];
        if (L > 0)
            cnt -= odd[L - 1];
 
        // Check if all the numbers in
        // the range are odd or not
        if (cnt == R - L + 1)
            return true;
 
        return false;
    }
 
    // Function to perform the queries
    static void performQueries(int a[], int n, int q[][],
                               int m)
    {
        precompute(a, n);
 
        // Perform queries
        for (int i = 0; i < m; i++) {
            int L = q[i][0], R = q[i][1];
            if (isOdd(L, R))
                System.out.println("Odd");
            else
                System.out.println("Even");
        }
    }
 
    // Driver code
    public static void main(String args[])
    {
        int[] a = { 2, 1, 5, 7, 6, 8, 9 };
        int n = a.length;
 
        // Queries
        int q[][]
            = { { 0, 2 }, { 1, 2 }, { 2, 3 }, { 3, 6 } };
        int m = q.length;
 
        performQueries(a, n, q, m);
    }
}
 
// This code is contributed by AnkitRai01


Python3




# Python implementation of the approach
MAXN = 1000005
even = [0] * MAXN
odd = [0] * MAXN
 
# Function to precompute the count
# of even and odd numbers
 
 
def precompute(arr, n):
 
    for i in range(n):
 
        # If the current element is odd
        # then put 1 at odd[i]
        if (arr[i] % 2 == 1):
            odd[i] = 1
 
        # If the current element is even
        # then put 1 at even[i]
        if (arr[i] % 2 == 0):
            even[i] = 1
 
    # Taking the prefix sums of these two arrays
    # so we can get the count of even and odd
    # numbers in a range [L, R] in O(1)
    for i in range(1, n):
        even[i] = even[i] + even[i - 1]
        odd[i] = odd[i] + odd[i - 1]
 
# Function that returns True if the bitwise
# AND of the subarray a[L...R] is odd
 
 
def isOdd(L, R):
 
    # cnt will store the count of odd
    # numbers in the range [L, R]
    cnt = odd[R]
    if (L > 0):
        cnt -= odd[L - 1]
 
    # Check if all the numbers in
    # the range are odd or not
    if (cnt == R - L + 1):
        return True
 
    return False
 
# Function to perform the queries
 
 
def performQueries(a, n, q, m):
    precompute(a, n)
 
    # Perform queries
    for i in range(m):
        L = q[i][0]
        R = q[i][1]
        if (isOdd(L, R)):
            print("Odd")
        else:
            print("Even")
 
 
# Driver code
if __name__ == '__main__':
    a = [2, 1, 5, 7, 6, 8, 9]
    n = len(a)
 
    # Queries
    q = [[0, 2], [1, 2], [2, 3], [3, 6]]
    m = len(q)
 
    performQueries(a, n, q, m)
 
# This code is contributed by PrinciRaj1992


C#




// C# implementation of the approach
using System;
 
class GFG {
 
    static readonly int MAXN = 1000005;
    static int[] even = new int[MAXN];
    static int[] odd = new int[MAXN];
 
    // Function to precompute the count
    // of even and odd numbers
    static void precompute(int[] arr, int n)
    {
        for (int i = 0; i < n; i++) {
 
            // If the current element is odd
            // then put 1 at odd[i]
            if (arr[i] % 2 == 1)
                odd[i] = 1;
 
            // If the current element is even
            // then put 1 at even[i]
            if (arr[i] % 2 == 0)
                even[i] = 1;
        }
 
        // Taking the prefix sums of these two arrays
        // so we can get the count of even and odd
        // numbers in a range [L, R] in O(1)
        for (int i = 1; i < n; i++) {
            even[i] = even[i] + even[i - 1];
            odd[i] = odd[i] + odd[i - 1];
        }
    }
 
    // Function that returns true if the bitwise
    // AND of the subarray a[L...R] is odd
    static bool isOdd(int L, int R)
    {
 
        // cnt will store the count of odd
        // numbers in the range [L, R]
        int cnt = odd[R];
        if (L > 0)
            cnt -= odd[L - 1];
 
        // Check if all the numbers in
        // the range are odd or not
        if (cnt == R - L + 1)
            return true;
 
        return false;
    }
 
    // Function to perform the queries
    static void performQueries(int[] a, int n, int[, ] q,
                               int m)
    {
        precompute(a, n);
 
        // Perform queries
        for (int i = 0; i < m; i++) {
            int L = q[i, 0], R = q[i, 1];
            if (isOdd(L, R))
                Console.WriteLine("Odd");
            else
                Console.WriteLine("Even");
        }
    }
 
    // Driver code
    public static void Main(String[] args)
    {
        int[] a = { 2, 1, 5, 7, 6, 8, 9 };
        int n = a.Length;
 
        // Queries
        int[, ] q
            = { { 0, 2 }, { 1, 2 }, { 2, 3 }, { 3, 6 } };
        int m = q.GetLength(0);
 
        performQueries(a, n, q, m);
    }
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
// Javascript implementation of the approach
var MAXN = 1000005;
var even = Array(MAXN).fill(0);
var odd = Array(MAXN).fill(0);
 
// Function to precompute the count
// of even and odd numbers
function precompute(arr, n)
{
 
    for (var i = 0; i < n; i++) {
 
        // If the current element is odd
        // then put 1 at odd[i]
        if (arr[i] % 2 == 1)
            odd[i] = 1;
 
        // If the current element is even
        // then put 1 at even[i]
        if (arr[i] % 2 == 0)
            even[i] = 1;
    }
 
    // Taking the prefix sums of these two arrays
    // so we can get the count of even and odd
    // numbers in a range [L, R] in O(1)
    for (var i = 1; i < n; i++) {
        even[i] = even[i] + even[i - 1];
        odd[i] = odd[i] + odd[i - 1];
    }
}
 
// Function that returns true if the bitwise
// AND of the subarray a[L...R] is odd
function isOdd(L, R)
{
 
    // cnt will store the count of odd
    // numbers in the range [L, R]
    var cnt = odd[R];
    if (L > 0)
        cnt -= odd[L - 1];
 
    // Check if all the numbers in
    // the range are odd or not
    if (cnt == R - L + 1)
        return true;
 
    return false;
}
 
// Function to perform the queries
function performQueries(a, n, q, m)
{
    precompute(a, n);
 
    // Perform queries
    for (var i = 0; i < m; i++)
    {
        var L = q[i][0], R = q[i][1];
        if (isOdd(L, R))
            document.write( "Odd"+"<br>");
        else
            document.write("Even"+"<br>");
    }
}
 
// Driver code
var a = [2, 1, 5, 7, 6, 8, 9];
var n = a.length;
 
// Queries
var q = [ [ 0, 2 ], [ 1, 2 ], [ 2, 3 ], [ 3, 6 ] ];
var m = q.length;
performQueries(a, n, q, m);
 
// This code is contributed by itsok.
</script>


Output: 

Even
Odd
Odd
Even

 

Time Complexity: O(Q) where Q is the number of queries.
Auxiliary Space: O(MAXN) 

Last Updated :
19 Oct, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments