Given an array arr[] consisting of N integers and an array Q[][2] consisting of K queries of type {L, R}, the task for each query is to check if the subarray {arr[L], .. arr[R]} of the array is non-decreasing or not. If found to be true, then print “Yes”. Otherwise, print “No“.
Examples:
Input: arr[] = {1, 7, 3, 4, 9}, K = 2, Q[][] = {{1, 2}, {2, 4}}
Output:
Yes
No
Explanation:
Query 1: The subarray in the range [1, 2] is {1, 7} which is non-decreasing. Therefore, print “Yes”.
Query 2: The subarray in the range [2, 4] is {7, 3, 4, 9} which is not non-decreasing. Therefore, print “No”.Input: arr[] = {3, 5, 7, 1, 8, 2}, K = 3, Q[][] = {{1, 3}, {2, 5}, {4, 6}}
Output:
Yes
No
No
Naive Approach: The simplest approach is to traverse the array over the range of indices [L, R] for each query and check if the subarray is sorted in ascending order or not. If found to be true, then print “Yes”. Otherwise, print “No“.
Time Complexity: O(N * Q)
Auxiliary Space: O(1)
Efficient Approach: The above approach can be optimized by precomputing the count of adjacent elements satisfying arr[i] > arr[i + 1] in the range [1, i] which results in constant time calculation of numbers of such indices in the range [L, R – 1]. Follow the steps below to solve the problem:
- Initialize an array, say pre[], to store the count of indices from the starting index, having adjacent elements in increasing order.
- Iterate over the range [1, N – 1] and assign pre[i] = pre[i – 1] and then increment pre[i] by 1, if arr[i – 1] > arr[i].
- Traverse the array Q[][] and for each query {L, R}, if pre[R – 1] – pre[L – 1] is 0, then print “Yes”. Otherwise, print “No“.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to perform queries to check if // subarrays over a given range of indices // is non-decreasing or not void checkSorted( int arr[], int N, vector<vector< int > >& Q) { // Stores count of indices up to i // such that arr[i] > arr[i + 1] int pre[N] = { 0 }; // Traverse the array for ( int i = 1; i < N; i++) { // Update pre[i] pre[i] = pre[i - 1] + (arr[i - 1] > arr[i]); } // Traverse the array Q[][] for ( int i = 0; i < Q.size(); i++) { int l = Q[i][0]; int r = Q[i][1] - 1; // If pre[r] - pre[l-1] exceeds 0 if (pre[r] - pre[l - 1] == 0) cout << "Yes" << endl; else cout << "No" << endl; } } // Driver Code int main() { int arr[] = { 1, 7, 3, 4, 9 }; vector<vector< int > > Q = { { 1, 2 }, { 2, 4 } }; int N = sizeof (arr) / sizeof (arr[0]); // Function Call checkSorted(arr, N, Q); return 0; } |
Java
// Java program for the above approach import java.io.*; class GFG { // Function to perform queries to check if // subarrays over a given range of indices // is non-decreasing or not static void checkSorted( int [] arr, int N, int [][] Q) { // Stores count of indices up to i // such that arr[i] > arr[i + 1] int [] pre = new int [N]; // Traverse the array for ( int i = 1 ; i < N; i++) { // Update pre[i] if ((arr[i - 1 ] > arr[i])) pre[i] = pre[i - 1 ] + 1 ; else pre[i] = pre[i - 1 ]; } // Traverse the array Q[][] for ( int i = 0 ; i < Q.length; i++) { int l = Q[i][ 0 ]; int r = Q[i][ 1 ] - 1 ; // If pre[r] - pre[l-1] exceeds 0 if (pre[r] - pre[l - 1 ] == 0 ) System.out.println( "Yes" ); else System.out.println( "No" ); } } // Driver Code public static void main(String[] args) { int arr[] = { 1 , 7 , 3 , 4 , 9 }; int Q[][] = { { 1 , 2 }, { 2 , 4 } }; int N = arr.length; // Function Call checkSorted(arr, N, Q); } } // This code is contributed by Dharanendra L V. |
Python3
# Python3 program for the above approach # Function to perform queries to check if # subarrays over a given range of indices # is non-decreasing or not def checkSorted(arr, N, Q): # Stores count of indices up to i # such that arr[i] > arr[i + 1] pre = [ 0 ] * (N) # Traverse the array for i in range ( 1 , N): # Update pre[i] pre[i] = pre[i - 1 ] + (arr[i - 1 ] > arr[i]) # Traverse the array Q[][] for i in range ( len (Q)): l = Q[i][ 0 ] r = Q[i][ 1 ] - 1 # If pre[r] - pre[l-1] exceeds 0 if (pre[r] - pre[l - 1 ] = = 0 ): print ( "Yes" ) else : print ( "No" ) # Driver Code if __name__ = = '__main__' : arr = [ 1 , 7 , 3 , 4 , 9 ] Q = [ [ 1 , 2 ],[ 2 , 4 ] ] N = len (arr) # Function Call checkSorted(arr, N, Q) # This code is contributed by mohit kumar 29. |
C#
// C# program for the above approach using System; public class GFG{ // Function to perform queries to check if // subarrays over a given range of indices // is non-decreasing or not static void checkSorted( int [] arr, int N, int [,] Q) { // Stores count of indices up to i // such that arr[i] > arr[i + 1] int [] pre = new int [N]; // Traverse the array for ( int i = 1; i < N; i++) { // Update pre[i] if ((arr[i - 1] > arr[i])) { pre[i] = pre[i - 1] + 1; } else { pre[i] = pre[i - 1];} } // Traverse the array Q[][] for ( int i = 0; i < Q.GetLength(0); i++) { int l = Q[i,0]; int r = Q[i,1] - 1; // If pre[r] - pre[l-1] exceeds 0 if (pre[r] - pre[l - 1] == 0) { Console.WriteLine( "Yes" );} else {Console.WriteLine( "No" );} } } // Driver Code static public void Main (){ int [] arr = { 1, 7, 3, 4, 9 }; int [,] Q = { { 1, 2 }, { 2, 4 } }; int N = arr.Length; // Function Call checkSorted(arr, N, Q); } } // This code is contributed by avanitrachhadiya2155 |
Javascript
<script> // Javascript program for the above approach // Function to perform queries to check if // subarrays over a given range of indices // is non-decreasing or not function checkSorted(arr, N, Q) { // Stores count of indices up to i // such that arr[i] > arr[i + 1] var pre = Array(N).fill(0); // Traverse the array for ( var i = 1; i < N; i++) { // Update pre[i] pre[i] = pre[i - 1] + (arr[i - 1] > arr[i]); } // Traverse the array Q[][] for ( var i = 0; i < Q.length; i++) { var l = Q[i][0]; var r = Q[i][1] - 1; // If pre[r] - pre[l-1] exceeds 0 if (pre[r] - pre[l - 1] == 0) document.write( "Yes" + "<br>" ); else document.write( "No" + "<br>" ); } } // Driver Code var arr = [ 1, 7, 3, 4, 9 ]; var Q = [ [ 1, 2 ], [ 2, 4 ] ]; var N = arr.length; // Function Call checkSorted(arr, N, Q); // This code is contributed by noob2000 </script> |
Yes No
Time Complexity: O(N)
Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!