Saturday, January 4, 2025
Google search engine
HomeData Modelling & AIQueries to check if subarrays over given range of indices is non-decreasing...

Queries to check if subarrays over given range of indices is non-decreasing or not

Given an array arr[] consisting of N integers and an array Q[][2] consisting of K queries of type {L, R}, the task for each query is to check if the subarray {arr[L], .. arr[R]} of the array is non-decreasing or not. If found to be true, then print “Yes”. Otherwise, print “No“.

Examples:

Input: arr[] = {1, 7, 3, 4, 9}, K = 2, Q[][] = {{1, 2}, {2, 4}}
Output:
Yes
No
Explanation:
Query 1: The subarray in the range [1, 2] is {1, 7} which is non-decreasing. Therefore, print “Yes”.
Query 2: The subarray in the range [2, 4] is {7, 3, 4, 9} which is not non-decreasing. Therefore, print “No”.

Input: arr[] = {3, 5, 7, 1, 8, 2}, K = 3, Q[][] = {{1, 3}, {2, 5}, {4, 6}}
Output:
Yes
No
No

Naive Approach: The simplest approach is to traverse the array over the range of indices [L, R] for each query and check if the subarray is sorted in ascending order or not. If found to be true, then print “Yes”. Otherwise, print “No“. 

Time Complexity: O(N * Q)
Auxiliary Space: O(1)

Efficient Approach: The above approach can be optimized by precomputing the count of adjacent elements satisfying arr[i] > arr[i + 1] in the range [1, i] which results in constant time calculation of numbers of such indices in the range [L, R – 1]. Follow the steps below to solve the problem:

  • Initialize an array, say pre[], to store the count of indices from the starting index, having adjacent elements in increasing order.
  • Iterate over the range [1, N – 1] and assign pre[i] = pre[i – 1] and then increment pre[i] by 1, if arr[i – 1] > arr[i].
  • Traverse the array Q[][] and for each query {L, R}, if pre[R – 1] – pre[L – 1] is 0, then print “Yes”. Otherwise, print “No“.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to perform queries to check if
// subarrays over a given range of indices
//  is non-decreasing or not
void checkSorted(int arr[], int N,
                 vector<vector<int> >& Q)
{
    // Stores count of indices up to i
    // such that arr[i] > arr[i + 1]
    int pre[N] = { 0 };
 
    // Traverse the array
    for (int i = 1; i < N; i++) {
 
        // Update pre[i]
        pre[i] = pre[i - 1]
                 + (arr[i - 1] > arr[i]);
    }
 
    // Traverse the array Q[][]
    for (int i = 0; i < Q.size(); i++) {
 
        int l = Q[i][0];
        int r = Q[i][1] - 1;
 
        // If pre[r] - pre[l-1] exceeds 0
        if (pre[r] - pre[l - 1] == 0)
            cout << "Yes" << endl;
        else
            cout << "No" << endl;
    }
}
 
// Driver Code
int main()
{
    int arr[] = { 1, 7, 3, 4, 9 };
    vector<vector<int> > Q = { { 1, 2 },
                               { 2, 4 } };
 
    int N = sizeof(arr) / sizeof(arr[0]);
 
    // Function Call
    checkSorted(arr, N, Q);
 
    return 0;
}


Java




// Java program for the above approach
import java.io.*;
class GFG
{
 
  // Function to perform queries to check if
  // subarrays over a given range of indices
  //  is non-decreasing or not
  static void checkSorted(int[] arr, int N, int[][] Q)
  {
 
    // Stores count of indices up to i
    // such that arr[i] > arr[i + 1]
    int[] pre = new int[N];
 
    // Traverse the array
    for (int i = 1; i < N; i++)
    {
 
      // Update pre[i]
      if((arr[i - 1] > arr[i]))
        pre[i] = pre[i - 1] + 1;
      else
        pre[i] = pre[i - 1];
    }
 
    // Traverse the array Q[][]
    for (int i = 0; i < Q.length; i++)
    {
      int l = Q[i][0];
      int r = Q[i][1] - 1;
 
      // If pre[r] - pre[l-1] exceeds 0
      if (pre[r] - pre[l - 1] == 0)
        System.out.println("Yes");
      else
        System.out.println("No");
    }
  }
 
  // Driver Code
  public static void main(String[] args)
  {
    int arr[] = { 1, 7, 3, 4, 9 };
    int Q[][] = { { 1, 2 }, { 2, 4 } };
 
    int N = arr.length;
 
    // Function Call
    checkSorted(arr, N, Q);
  }
}
 
// This code is contributed by Dharanendra L V.


Python3




# Python3 program for the above approach
 
# Function to perform queries to check if
# subarrays over a given range of indices
# is non-decreasing or not
def checkSorted(arr, N, Q):
   
    # Stores count of indices up to i
    # such that arr[i] > arr[i + 1]
    pre = [0]*(N)
 
    # Traverse the array
    for i in range(1, N):
 
        # Update pre[i]
        pre[i] = pre[i - 1] + (arr[i - 1] > arr[i])
 
    # Traverse the array Q[][]
    for i in range(len(Q)):
        l = Q[i][0]
        r = Q[i][1] - 1
 
        # If pre[r] - pre[l-1] exceeds 0
        if (pre[r] - pre[l - 1] == 0):
            print("Yes")
        else:
            print("No")
 
# Driver Code
if __name__ == '__main__':
    arr =[1, 7, 3, 4, 9]
    Q = [ [ 1, 2 ],[ 2, 4 ] ]
    N = len(arr)
 
    # Function Call
    checkSorted(arr, N, Q)
 
# This code is contributed by mohit kumar 29.


C#




// C# program for the above approach
 
using System;
 
public class GFG{
     
    // Function to perform queries to check if
    // subarrays over a given range of indices
    // is non-decreasing or not
    static void checkSorted(int[] arr, int N, int[,] Q)
    {
        // Stores count of indices up to i
    // such that arr[i] > arr[i + 1]
    int[] pre = new int[N];
  
    // Traverse the array
    for (int i = 1; i < N; i++)
    {
  
      // Update pre[i]
      if((arr[i - 1] > arr[i]))
      {
          pre[i] = pre[i - 1] + 1;
      }
      else
      {  pre[i] = pre[i - 1];}
    }
  
    // Traverse the array Q[][]
    for (int i = 0; i < Q.GetLength(0); i++)
    {
         
      int l = Q[i,0];
      int r = Q[i,1] - 1;
  
      // If pre[r] - pre[l-1] exceeds 0
      if (pre[r] - pre[l - 1] == 0)
      {  Console.WriteLine("Yes");}
      else
        {Console.WriteLine("No");}
    }
    }
     
    // Driver Code
 
    static public void Main (){
         
        int[] arr = { 1, 7, 3, 4, 9 };
    int[,] Q = { { 1, 2 }, { 2, 4 } };
  
    int N = arr.Length;
  
    // Function Call
    checkSorted(arr, N, Q);
    }
}
 
// This code is contributed by avanitrachhadiya2155


Javascript




<script>
 
// Javascript program for the above approach
 
// Function to perform queries to check if
// subarrays over a given range of indices
//  is non-decreasing or not
function checkSorted(arr, N, Q)
{
     
    // Stores count of indices up to i
    // such that arr[i] > arr[i + 1]
    var pre = Array(N).fill(0);
 
    // Traverse the array
    for(var i = 1; i < N; i++)
    {
         
        // Update pre[i]
        pre[i] = pre[i - 1] +
                (arr[i - 1] > arr[i]);
    }
 
    // Traverse the array Q[][]
    for(var i = 0; i < Q.length; i++)
    {
        var l = Q[i][0];
        var r = Q[i][1] - 1;
 
        // If pre[r] - pre[l-1] exceeds 0
        if (pre[r] - pre[l - 1] == 0)
            document.write("Yes" + "<br>");
        else
            document.write("No" + "<br>");
    }
}
 
// Driver Code
var arr = [ 1, 7, 3, 4, 9 ];
var Q = [ [ 1, 2 ], [ 2, 4 ] ];
var N = arr.length;
 
// Function Call
checkSorted(arr, N, Q);
 
// This code is contributed by noob2000
 
</script>


Output: 

Yes
No

 

Time Complexity: O(N)
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments