Given an array arr[] consisting of N integers and an array Q[][], where each row is a query of the form {L, R}. The task for each query is to check if the count of increasing and decreasing subarrays in the range [L, R] is the same or not. If it is found to be true, then print “Yes”. Otherwise, print “No”.
Examples:
Input: arr[] = {11, 13, 12, 14}, Q[][] = {{1, 4}, {2, 4}}
Output:
No
Yes
Explanation:
Query 1: There are two increasing subarrays {11, 13} and {12, 14} in the range [1, 4]. But there is only one decreasing subarray {13, 12} in the range [1, 4].
Therefore, print No.
Query 2: There is only one increasing subarray {12, 14} and one decreasing subarray {13, 12} in the range [2, 4].
Therefore, print Yes.Input: arr[] = {16, 24, 32, 18, 14}, Q = {{1, 5}, {2, 3}, {2, 4}}
Output:
Yes
No
Yes
Naive Approach: The simplest approach to solve this problem is to generate all possible subarrays from the subarray {arr[L], arr[R]} and check if the count of increasing and decreasing subarrays is the same or not. If found to be true, then print “Yes”. Otherwise, print “No”.
Time Complexity: O(Q*N2)
Auxiliary Space: O(1)
Efficient Approach: To optimize the above approach, observe that every increasing subarray is followed by a decreasing subarray and vice versa i.e., they alternately increase or decrease. Therefore, the number of increasing and decreasing subarrays will differ by at most 1. Therefore, the idea is to check if the first pair and last pair of elements from the range, both forms increasing pairs or not. If found to be true, then print “No”. Otherwise, print “Yes”. Perform the above step for each query to get the result in O(1).
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to check if given range // have equal number of increasing // as well as decreasing subarrays void checkCount( int A[], int Q[][2], int q) { // Traverse each query for ( int i = 0; i < q; i++) { int L = Q[i][0]; int R = Q[i][1]; // For 0-based indexing L--, R--; // Condition for same count of // increasing & decreasing subarray if ((A[L] < A[L + 1]) != (A[R - 1] < A[R])) { cout << "Yes\n" ; } else { cout << "No\n" ; } } } // Driver Code int main() { int arr[] = { 11, 13, 12, 14 }; int Q[][2] = { { 1, 4 }, { 2, 4 } }; int q = sizeof (Q) / sizeof (Q[0]); checkCount(arr, Q, q); return 0; } |
Java
// Java program for the above approach import java.io.*; import java.util.*; class GFG{ // Function to check if given range // have equal number of increasing // as well as decreasing subarrays static void checkCount( int A[], int Q[][], int q) { // Traverse each query for ( int i = 0 ; i < q; i++) { int L = Q[i][ 0 ]; int R = Q[i][ 1 ]; // For 0-based indexing L--; R--; // Condition for same count of // increasing & decreasing subarray if ((A[L] < A[L + 1 ]) != (A[R - 1 ] < A[R])) { System.out.println( "Yes" ); } else { System.out.println( "No" ); } } } // Driver Code public static void main(String[] args) { int arr[] = { 11 , 13 , 12 , 14 }; int Q[][] = { { 1 , 4 }, { 2 , 4 } }; int q = Q.length; checkCount(arr, Q, q); } } // This code is contributed by susmitakundugoaldanga |
Python3
# Python3 program for the above approach # Function to check if given range # have equal number of increasing # as well as decreasing subarrays def checkCount(A, Q, q): # Traverse each query for i in range (q): L = Q[i][ 0 ] R = Q[i][ 1 ] # For 0-based indexing L - = 1 R - = 1 # Condition for same count of # increasing & decreasing subarray if ((A[L] < A[L + 1 ]) ! = (A[R - 1 ] < A[R])): print ( "Yes" ) else : print ( "No" ) # Driver Code if __name__ = = '__main__' : arr = [ 11 , 13 , 12 , 14 ] Q = [ [ 1 , 4 ], [ 2 , 4 ] ] q = len (Q) checkCount(arr, Q, q) # This code is contributed by mohit kumar 29 |
C#
// C# program for the above approach using System; class GFG{ // Function to check if given range // have equal number of increasing // as well as decreasing subarrays static void checkCount( int [] A, int [,] Q, int q) { // Traverse each query for ( int i = 0; i < q; i++) { int L = Q[i, 0]; int R = Q[i, 1]; // For 0-based indexing L--; R--; // Condition for same count of // increasing & decreasing subarray if ((A[L] < A[L + 1]) != (A[R - 1] < A[R])) { Console.WriteLine( "Yes" ); } else { Console.WriteLine( "No" ); } } } // Driver Code public static void Main() { int [] arr = { 11, 13, 12, 14 }; int [,] Q = { { 1, 4 }, { 2, 4 } }; int q = Q.GetLength(0); checkCount(arr, Q, q); } } // This code is contributed by code_hunt |
Javascript
<script> // JavaScript program for the above approach // Function to check if given range // have equal number of increasing // as well as decreasing subarrays function checkCount(A, Q, q) { // Traverse each query for (let i = 0; i < q; i++) { let L = Q[i][0]; let R = Q[i][1]; // For 0-based indexing L--; R--; // Condition for same count of // increasing & decreasing subarray if ((A[L] < A[L + 1]) != (A[R - 1] < A[R])) { document.write( "Yes" + "<br/>" ); } else { document.write( "No" + "<br/>" ); } } } // Driver Code let arr = [ 11, 13, 12, 14 ]; let Q = [[ 1, 4 ], [ 2, 4 ]]; let q = Q.length; checkCount(arr, Q, q); </script> |
No Yes
Time Complexity: O(Q)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!