Given an array of N integers, the task is to perform the following two operations on the given array:
query(start, end) : Print the number of Composite numbers in the subarray from start to end
update(i, x) : update the value at index i to x, i.e arr[i] = x
Examples:
Input : arr = {1, 12, 3, 5, 17, 9} Query 1: query(start = 0, end = 4) Query 2: update(i = 3, x = 6) Query 3: query(start = 0, end = 4) Output :1 2 Explanation In Query 1, the subarray [0...4] has 1 Composite number viz. {12} In Query 2, the value at index 3 is updated to 6, the array arr now is, {1, 12, 3, 6, 7, 9} In Query 3, the subarray [0...4] has 2 Composite Numbers viz. {12, 6}
Since we need to handle both range queries and point updates, an efficient method is to use a segment tree to solve the problem. A segment tree is best suited for this purpose.
We can use Sieve of Eratosthenes to preprocess all the primes till the maximum value that arri can take, say MAX. The time complexity for this operation will be O(MAX log(log(MAX))).
Building the segment tree:
The problem can be reduced to subarray sum using segment tree.
Now, we can build the segment tree where a leaf node is represented as either 0 (if it is a prime number) or 1 (if it is a composite number).
The internal nodes of the segment tree equal to the sum of its child nodes, thus a node represents the total composite numbers in the range from L to R where the range L to R falls under this node and the sub-tree below it.
Handling Queries and Point Updates:
Whenever we get a query from start to end, then we can query the segment tree for the sum of nodes in the range start to end, which in turn represents the number of composites in the range start to end.
If we need to perform a point update and update the value at index i to x, then we check for the following cases:
Let the old value of arri be y and the new value be x.
- Case 1: If x and y both are composites.
Count of composites in the subarray does not change, so we just update array and donot
modify the segment tree- Case 2: If x and y both are primes.
Count of composites in the subarray does not change, so we just update array and donot
modify the segment tree- Case 3: If y is composite but x is prime.
Count of composite numbers in the subarray decreases, so we update array and add -1 to every
range, the index i which is to be updated, is a part of in the segment tree- Case 4: If y is prime but x is composite.
Count of composite numbers in the subarray increases, so we update array and add 1 to every
range, the index i which is to be updated, is a part of in the segment tree
Below is the implementation of the above approach:
C++
// C++ program to find number of composite numbers in a // subarray and performing updates #include <bits/stdc++.h> using namespace std; #define MAX 1000 // Function to calculate primes upto MAX // using sieve of Eratosthenes void sieveOfEratosthenes( bool isPrime[]) { isPrime[1] = true ; for ( int p = 2; p * p <= MAX; p++) { // If prime[p] is not changed, then // it is a prime if (isPrime[p] == true ) { // Update all multiples of p for ( int i = p * 2; i <= MAX; i += p) isPrime[i] = false ; } } } // A utility function to get the middle // index from corner indexes. int getMid( int s, int e) { return s + (e - s) / 2; } /* A recursive function to get the number of composites in a given range of array indexes. The following are parameters for this function. st --> Pointer to segment tree index --> Index of current node in the segment tree. Initially 0 is passed as root is always at index 0. ss & se --> Starting and ending indexes of the segment represented by current node, i.e., st[index] qs & qe --> Starting and ending indexes of query range */ int queryCompositesUtil( int * st, int ss, int se, int qs, int qe, int index) { // If segment of this node is a part of given range, // then return the number of composites // in the segment if (qs <= ss && qe >= se) return st[index]; // If segment of this node is // outside the given range if (se < qs || ss > qe) return 0; // If a part of this segment // overlaps with the given range int mid = getMid(ss, se); return queryCompositesUtil(st, ss, mid, qs, qe, 2 * index + 1) + queryCompositesUtil(st, mid + 1, se, qs, qe, 2 * index + 2); } /* A recursive function to update the nodes which have the given index in their range. The following are parameters st, si, ss and se are same as getSumUtil() i --> index of the element to be updated. This index is in input array. diff --> Value to be added to all nodes which have i in range */ void updateValueUtil( int * st, int ss, int se, int i, int diff, int si) { // Base Case: If the input index // lies outside the range of // this segment if (i < ss || i > se) return ; // If the input index is in range of // this node, then update the value of // the node and its children st[si] = st[si] + diff; if (se != ss) { int mid = getMid(ss, se); updateValueUtil(st, ss, mid, i, diff, 2 * si + 1); updateValueUtil(st, mid + 1, se, i, diff, 2 * si + 2); } } // The function to update a value in input // array and segment tree. It uses updateValueUtil() // to update the value in segment tree void updateValue( int arr[], int * st, int n, int i, int new_val, bool isPrime[]) { // Check for erroneous input index if (i < 0 || i > n - 1) { printf ( "Invalid Input" ); return ; } int diff, oldValue; oldValue = arr[i]; // Update the value in array arr[i] = new_val; // Case 1: Old and new values both are primes if (isPrime[oldValue] && isPrime[new_val]) return ; // Case 2: Old and new values both composite if ((!isPrime[oldValue]) && (!isPrime[new_val])) return ; // Case 3: Old value was composite, new value is prime if (!isPrime[oldValue] && isPrime[new_val]) { diff = -1; } // Case 4: Old value was prime, new_val is composite if (isPrime[oldValue] && !isPrime[new_val]) { diff = 1; } // Update the values of nodes in segment tree updateValueUtil(st, 0, n - 1, i, diff, 0); } // Return number of composite numbers in range // from index qs (query start) to qe (query end). // It mainly uses queryCompositesUtil() void queryComposites( int * st, int n, int qs, int qe) { int compositesInRange = queryCompositesUtil(st, 0, n - 1, qs, qe, 0); cout << "Number of Composites in subarray from " << qs << " to " << qe << " = " << compositesInRange << "\n" ; } // A recursive function that constructs Segment Tree // for array[ss..se]. // si is index of current node in segment tree st int constructSTUtil( int arr[], int ss, int se, int * st, int si, bool isPrime[]) { // If there is one element in array, check if it // is prime then store 1 in the segment tree else // store 0 and return if (ss == se) { // if arr[ss] is composite if (!isPrime[arr[ss]]) st[si] = 1; else st[si] = 0; return st[si]; } // If there are more than one elements, then recur // for left and right subtrees and store the sum // of the two values in this node int mid = getMid(ss, se); st[si] = constructSTUtil(arr, ss, mid, st, si * 2 + 1, isPrime) + constructSTUtil(arr, mid + 1, se, st, si * 2 + 2, isPrime); return st[si]; } /* Function to construct segment tree from given array. This function allocates memory for segment tree and calls constructSTUtil() to fill the allocated memory */ int * constructST( int arr[], int n, bool isPrime[]) { // Allocate memory for segment tree // Height of segment tree int x = ( int )( ceil (log2(n))); // Maximum size of segment tree int max_size = 2 * ( int ) pow (2, x) - 1; int * st = new int [max_size]; // Fill the allocated memory st constructSTUtil(arr, 0, n - 1, st, 0, isPrime); // Return the constructed segment tree return st; } // Driver Code int main() { int arr[] = { 1, 12, 3, 5, 17, 9 }; int n = sizeof (arr) / sizeof (arr[0]); /* Preprocess all primes till MAX. Create a boolean array "isPrime[0..MAX]". A value in prime[i] will finally be false if i is composite, else true. */ bool isPrime[MAX + 1]; memset (isPrime, true , sizeof isPrime); sieveOfEratosthenes(isPrime); // Build segment tree from given array int * st = constructST(arr, n, isPrime); // Query 1: Query(start = 0, end = 4) int start = 0; int end = 4; queryComposites(st, n, start, end); // Query 2: Update(i = 3, x = 6), i.e Update // a[i] to x int i = 3; int x = 6; updateValue(arr, st, n, i, x, isPrime); // Query 3: Query(start = 0, end = 4) start = 0; end = 4; queryComposites(st, n, start, end); return 0; } |
Java
// Java program to find number of composite numbers in a // subarray and performing updates public class Main { static int MAX = 1000 ; // Function to calculate primes upto MAX // using sieve of Eratosthenes static void sieveOfEratosthenes( boolean [] isPrime) { isPrime[ 1 ] = true ; for ( int p = 2 ; p * p <= MAX; p++) { // If prime[p] is not changed, then // it is a prime if (isPrime[p] == true ) { // Update all multiples of p for ( int i = p * 2 ; i <= MAX; i += p) isPrime[i] = false ; } } } // A utility function to get the middle // index from corner indexes. static int getMid( int s, int e) { return s + (e - s) / 2 ; } /* A recursive function to get the number of composites in a given range of array indexes. The following are parameters for this function. st --> Pointer to segment tree index --> Index of current node in the segment tree. Initially 0 is passed as root is always at index 0. ss & se --> Starting and ending indexes of the segment represented by current node, i.e., st[index] qs & qe --> Starting and ending indexes of query range */ static int queryCompositesUtil( int [] st, int ss, int se, int qs, int qe, int index) { // If segment of this node is a part of given range, // then return the number of composites // in the segment if (qs <= ss && qe >= se) return st[index]; // If segment of this node is // outside the given range if (se < qs || ss > qe) return 0 ; // If a part of this segment // overlaps with the given range int mid = getMid(ss, se); return queryCompositesUtil(st, ss, mid, qs, qe, 2 * index + 1 ) + queryCompositesUtil(st, mid + 1 , se, qs, qe, 2 * index + 2 ); } /* A recursive function to update the nodes which have the given index in their range. The following are parameters st, si, ss and se are same as getSumUtil() i --> index of the element to be updated. This index is in input array. diff --> Value to be added to all nodes which have i in range */ static void updateValueUtil( int [] st, int ss, int se, int i, int diff, int si) { // Base Case: If the input index // lies outside the range of // this segment if (i < ss || i > se) return ; // If the input index is in range of // this node, then update the value of // the node and its children st[si] = st[si] + diff; if (se != ss) { int mid = getMid(ss, se); updateValueUtil(st, ss, mid, i, diff, 2 * si + 1 ); updateValueUtil(st, mid + 1 , se, i, diff, 2 * si + 2 ); } } // The function to update a value in input // array and segment tree. It uses updateValueUtil() // to update the value in segment tree static void updateValue( int [] arr, int [] st, int n, int i, int new_val, boolean [] isPrime) { // Check for erroneous input index if (i < 0 || i > n - 1 ) { System.out.print( "Invalid Input" ); return ; } int diff = 0 , oldValue; oldValue = arr[i]; // Update the value in array arr[i] = new_val; // Case 1: Old and new values both are primes if (isPrime[oldValue] && isPrime[new_val]) return ; // Case 2: Old and new values both composite if ((!isPrime[oldValue]) && (!isPrime[new_val])) return ; // Case 3: Old value was composite, new value is prime if (!isPrime[oldValue] && isPrime[new_val]) { diff = - 1 ; } // Case 4: Old value was prime, new_val is composite if (isPrime[oldValue] && !isPrime[new_val]) { diff = 1 ; } // Update the values of nodes in segment tree updateValueUtil(st, 0 , n - 1 , i, diff, 0 ); } // Return number of composite numbers in range // from index qs (query start) to qe (query end). // It mainly uses queryCompositesUtil() static void queryComposites( int [] st, int n, int qs, int qe) { int compositesInRange = queryCompositesUtil(st, 0 , n - 1 , qs, qe, 0 ); System.out.println( "Number of Composites in subarray from " + qs + " to " + qe + " = " + compositesInRange); } // A recursive function that constructs Segment Tree // for array[ss..se]. // si is index of current node in segment tree st static int constructSTUtil( int [] arr, int ss, int se, int [] st, int si, boolean [] isPrime) { // If there is one element in array, check if it // is prime then store 1 in the segment tree else // store 0 and return if (ss == se) { // if arr[ss] is composite if (!isPrime[arr[ss]]) st[si] = 1 ; else st[si] = 0 ; return st[si]; } // If there are more than one elements, then recur // for left and right subtrees and store the sum // of the two values in this node int mid = getMid(ss, se); st[si] = constructSTUtil(arr, ss, mid, st, si * 2 + 1 , isPrime) + constructSTUtil(arr, mid + 1 , se, st, si * 2 + 2 , isPrime); return st[si]; } /* Function to construct segment tree from given array. This function allocates memory for segment tree and calls constructSTUtil() to fill the allocated memory */ static int [] constructST( int [] arr, int n, boolean [] isPrime) { // Allocate memory for segment tree // Height of segment tree int x = ( int )(Math.ceil(Math.log(n) / Math.log( 2 ))); // Maximum size of segment tree int max_size = 2 * ( int )Math.pow( 2 , x) - 1 ; int [] st = new int [max_size]; // Fill the allocated memory st constructSTUtil(arr, 0 , n - 1 , st, 0 , isPrime); // Return the constructed segment tree return st; } public static void main(String[] args) { int [] arr = { 1 , 12 , 3 , 5 , 17 , 9 }; int n = arr.length; /* Preprocess all primes till MAX. Create a boolean array "isPrime[0..MAX]". A value in prime[i] will finally be false if i is composite, else true. */ boolean [] isPrime = new boolean [MAX + 1 ]; for ( int a = 0 ; a < MAX + 1 ; a++) { isPrime[a] = true ; } sieveOfEratosthenes(isPrime); // Build segment tree from given array int [] st = constructST(arr, n, isPrime); // Query 1: Query(start = 0, end = 4) int start = 0 ; int end = 4 ; queryComposites(st, n, start, end); // Query 2: Update(i = 3, x = 6), i.e Update // a[i] to x int i = 3 ; int x = 6 ; updateValue(arr, st, n, i, x, isPrime); // Query 3: Query(start = 0, end = 4) start = 0 ; end = 4 ; queryComposites(st, n, start, end); } } // This code is contributed by divyeshrabadiya07. |
Python3
# Python3 program to find # number of composite numbers # in a subarray and performing # updates import math MAX = 1000 # Function to calculate primes # upto MAX using sieve of Eratosthenes def sieveOfEratosthenes(isPrime): isPrime[ 1 ] = True ; p = 2 while p * p < = MAX : # If prime[p] is not # changed, then # it is a prime if (isPrime[p] = = True ): # Update all multiples of p for i in range (p * 2 , MAX + 1 , p): isPrime[i] = False ; p + = 1 # A utility function to get # the middle index from # corner indexes. def getMid(s, e): return s + (e - s) / / 2 ; ''' A recursive function to get the number of composites in a given range of array indexes. The following are parameters for this function. st --> Pointer to segment tree index --> Index of current node in the segment tree. Initially 0 is passed as root is always at index 0. ss & se --> Starting and ending indexes of the segment represented by current node, i.e., st[index] qs & qe --> Starting and ending indexes of query range ''' def queryCompositesUtil(st, ss, se, qs, qe, index): # If segment of this node is a # part of given range, then # return the number of composites # in the segment if (qs < = ss and qe > = se): return st[index]; # If segment of this node is # outside the given range if (se < qs or ss > qe): return 0 ; # If a part of this segment # overlaps with the given range mid = getMid(ss, se); return (queryCompositesUtil(st, ss, mid, qs, qe, 2 * index + 1 ) + queryCompositesUtil(st, mid + 1 , se, qs, qe, 2 * index + 2 )); ''' A recursive function to update the nodes which have the given index in their range. The following are parameters st, si, ss and se are same as getSumUtil() i --> index of the element to be updated. This index is in input array. diff --> Value to be added to all nodes which have i in range ''' def updateValueUtil(st, ss, se, i, diff, si): # Base Case: If the input index # lies outside the range of # this segment if (i < ss or i > se): return ; # If the input index is in # range of this node, then # update the value of the # node and its children st[si] = st[si] + diff; if (se ! = ss): mid = getMid(ss, se); updateValueUtil(st, ss, mid, i, diff, 2 * si + 1 ); updateValueUtil(st, mid + 1 , se, i, diff, 2 * si + 2 ); # The function to update a value # in input array and segment tree. # It uses updateValueUtil() to # update the value in segment tree def updateValue(arr, st, n, i, new_val, isPrime): # Check for erroneous # input index if (i < 0 or i > n - 1 ): print ( "Invalid Input" ); return oldValue = arr[i]; # Update the value in array arr[i] = new_val; # Case 1: Old and new values # both are primes if (isPrime[oldValue] and isPrime[new_val]): return ; # Case 2: Old and new values # both composite if (( not isPrime[oldValue]) and ( not isPrime[new_val])): return ; # Case 3: Old value was composite, # new value is prime if ( not isPrime[oldValue] and isPrime[new_val]): diff = - 1 ; # Case 4: Old value was prime, # new_val is composite if (isPrime[oldValue] and not isPrime[new_val]): diff = 1 ; # Update the values of # nodes in segment tree updateValueUtil(st, 0 , n - 1 , i, diff, 0 ); # Return number of composite # numbers in range from index # qs (query start) to qe (query end). # It mainly uses queryCompositesUtil() def queryComposites(st, n, qs, qe): compositesInRange = queryCompositesUtil(st, 0 , n - 1 , qs, qe, 0 ); print ( "Number of Composites in subarray from " , qs, " to " , qe, " = " , compositesInRange) # A recursive function that constructs # Segment Tree for array[ss..se]. # si is index of current node in # segment tree st def constructSTUtil(arr, ss, se, st, si, isPrime): # If there is one element in array, # check if it is prime then store # 1 in the segment tree else store # 0 and return if (ss = = se): # if arr[ss] is composite if ( not isPrime[arr[ss]]): st[si] = 1 ; else : st[si] = 0 ; return st[si]; # If there are more than one elements, # then recur for left and right subtrees # and store the sum of the two values # in this node mid = getMid(ss, se); st[si] = (constructSTUtil(arr, ss, mid, st, si * 2 + 1 , isPrime) + constructSTUtil(arr, mid + 1 , se, st, si * 2 + 2 , isPrime)) return st[si]; ''' Function to construct segment tree from given array. This function allocates memory for segment tree and calls constructSTUtil() to fill the allocated memory ''' def constructST(arr, n, isPrime): # Allocate memory for # segment tree # Height of segment tree x = ( int )(math.ceil(math.log2(n))); # Maximum size of segment tree max_size = 2 * pow ( 2 , x) - 1 ; st = [ 0 ] * max_size # Fill the allocated memory st constructSTUtil(arr, 0 , n - 1 , st, 0 , isPrime); # Return the constructed # segment tree return st; # Driver Code if __name__ = = "__main__" : arr = [ 1 , 12 , 3 , 5 , 17 , 9 ] n = len (arr) ''' Preprocess all primes till MAX. Create a boolean array "isPrime[0..MAX]". A value in prime[i] will finally be false if i is composite, else true. ''' isPrime = [ True ] * ( MAX + 1 ) sieveOfEratosthenes(isPrime); # Build segment tree from given array st = constructST(arr, n, isPrime); # Query 1: Query(start = 0, # end = 4) start = 0 ; end = 4 ; queryComposites(st, n, start, end); # Query 2: Update(i = 3, x = 6), # i.e Update a[i] to x i = 3 ; x = 6 ; updateValue(arr, st, n, i, x, isPrime); # Query 3: Query(start = 0, # end = 4) start = 0 ; end = 4 ; queryComposites(st, n, start, end) # This code is contributed by Chitranayal |
C#
// C# program to find number of composite numbers in a // subarray and performing updates using System; class GFG { static int MAX = 1000; // Function to calculate primes upto MAX // using sieve of Eratosthenes static void sieveOfEratosthenes( bool [] isPrime) { isPrime[1] = true ; for ( int p = 2; p * p <= MAX; p++) { // If prime[p] is not changed, then // it is a prime if (isPrime[p] == true ) { // Update all multiples of p for ( int i = p * 2; i <= MAX; i += p) isPrime[i] = false ; } } } // A utility function to get the middle // index from corner indexes. static int getMid( int s, int e) { return s + (e - s) / 2; } /* A recursive function to get the number of composites in a given range of array indexes. The following are parameters for this function. st --> Pointer to segment tree index --> Index of current node in the segment tree. Initially 0 is passed as root is always at index 0. ss & se --> Starting and ending indexes of the segment represented by current node, i.e., st[index] qs & qe --> Starting and ending indexes of query range */ static int queryCompositesUtil( int [] st, int ss, int se, int qs, int qe, int index) { // If segment of this node is a part of given range, // then return the number of composites // in the segment if (qs <= ss && qe >= se) return st[index]; // If segment of this node is // outside the given range if (se < qs || ss > qe) return 0; // If a part of this segment // overlaps with the given range int mid = getMid(ss, se); return queryCompositesUtil(st, ss, mid, qs, qe, 2 * index + 1) + queryCompositesUtil(st, mid + 1, se, qs, qe, 2 * index + 2); } /* A recursive function to update the nodes which have the given index in their range. The following are parameters st, si, ss and se are same as getSumUtil() i --> index of the element to be updated. This index is in input array. diff --> Value to be added to all nodes which have i in range */ static void updateValueUtil( int [] st, int ss, int se, int i, int diff, int si) { // Base Case: If the input index // lies outside the range of // this segment if (i < ss || i > se) return ; // If the input index is in range of // this node, then update the value of // the node and its children st[si] = st[si] + diff; if (se != ss) { int mid = getMid(ss, se); updateValueUtil(st, ss, mid, i, diff, 2 * si + 1); updateValueUtil(st, mid + 1, se, i, diff, 2 * si + 2); } } // The function to update a value in input // array and segment tree. It uses updateValueUtil() // to update the value in segment tree static void updateValue( int [] arr, int [] st, int n, int i, int new_val, bool [] isPrime) { // Check for erroneous input index if (i < 0 || i > n - 1) { Console.Write( "Invalid Input" ); return ; } int diff = 0, oldValue; oldValue = arr[i]; // Update the value in array arr[i] = new_val; // Case 1: Old and new values both are primes if (isPrime[oldValue] && isPrime[new_val]) return ; // Case 2: Old and new values both composite if ((!isPrime[oldValue]) && (!isPrime[new_val])) return ; // Case 3: Old value was composite, new value is prime if (!isPrime[oldValue] && isPrime[new_val]) { diff = -1; } // Case 4: Old value was prime, new_val is composite if (isPrime[oldValue] && !isPrime[new_val]) { diff = 1; } // Update the values of nodes in segment tree updateValueUtil(st, 0, n - 1, i, diff, 0); } // Return number of composite numbers in range // from index qs (query start) to qe (query end). // It mainly uses queryCompositesUtil() static void queryComposites( int [] st, int n, int qs, int qe) { int compositesInRange = queryCompositesUtil(st, 0, n - 1, qs, qe, 0); Console.WriteLine( "Number of Composites in subarray from " + qs + " to " + qe + " = " + compositesInRange); } // A recursive function that constructs Segment Tree // for array[ss..se]. // si is index of current node in segment tree st static int constructSTUtil( int [] arr, int ss, int se, int [] st, int si, bool [] isPrime) { // If there is one element in array, check if it // is prime then store 1 in the segment tree else // store 0 and return if (ss == se) { // if arr[ss] is composite if (!isPrime[arr[ss]]) st[si] = 1; else st[si] = 0; return st[si]; } // If there are more than one elements, then recur // for left and right subtrees and store the sum // of the two values in this node int mid = getMid(ss, se); st[si] = constructSTUtil(arr, ss, mid, st, si * 2 + 1, isPrime) + constructSTUtil(arr, mid + 1, se, st, si * 2 + 2, isPrime); return st[si]; } /* Function to construct segment tree from given array. This function allocates memory for segment tree and calls constructSTUtil() to fill the allocated memory */ static int [] constructST( int [] arr, int n, bool [] isPrime) { // Allocate memory for segment tree // Height of segment tree int x = ( int )(Math.Ceiling(Math.Log(n) / Math.Log(2))); // Maximum size of segment tree int max_size = 2 * ( int )Math.Pow(2, x) - 1; int [] st = new int [max_size]; // Fill the allocated memory st constructSTUtil(arr, 0, n - 1, st, 0, isPrime); // Return the constructed segment tree return st; } static void Main() { int [] arr = { 1, 12, 3, 5, 17, 9 }; int n = arr.Length; /* Preprocess all primes till MAX. Create a boolean array "isPrime[0..MAX]". A value in prime[i] will finally be false if i is composite, else true. */ bool [] isPrime = new bool [MAX + 1]; for ( int a = 0; a < MAX + 1; a++) { isPrime[a] = true ; } sieveOfEratosthenes(isPrime); // Build segment tree from given array int [] st = constructST(arr, n, isPrime); // Query 1: Query(start = 0, end = 4) int start = 0; int end = 4; queryComposites(st, n, start, end); // Query 2: Update(i = 3, x = 6), i.e Update // a[i] to x int i = 3; int x = 6; updateValue(arr, st, n, i, x, isPrime); // Query 3: Query(start = 0, end = 4) start = 0; end = 4; queryComposites(st, n, start, end); } } // This code is contributed by decode2207. |
Javascript
<script> // Javascript program to find number of composite numbers in a // subarray and performing updates let MAX = 1000; // Function to calculate primes upto MAX // using sieve of Eratosthenes function sieveOfEratosthenes(isPrime) { isPrime[1] = true ; for (let p = 2; p * p <= MAX; p++) { // If prime[p] is not changed, then // it is a prime if (isPrime[p] == true ) { // Update all multiples of p for (let i = p * 2; i <= MAX; i += p) isPrime[i] = false ; } } } // A utility function to get the middle // index from corner indexes. function getMid(s, e) { return s + parseInt((e - s) / 2, 10); } /* A recursive function to get the number of composites in a given range of array indexes. The following are parameters for this function. st --> Pointer to segment tree index --> Index of current node in the segment tree. Initially 0 is passed as root is always at index 0. ss & se --> Starting and ending indexes of the segment represented by current node, i.e., st[index] qs & qe --> Starting and ending indexes of query range */ function queryCompositesUtil(st, ss, se, qs, qe, index) { // If segment of this node is a part of given range, // then return the number of composites // in the segment if (qs <= ss && qe >= se) return st[index]; // If segment of this node is // outside the given range if (se < qs || ss > qe) return 0; // If a part of this segment // overlaps with the given range let mid = getMid(ss, se); return queryCompositesUtil(st, ss, mid, qs, qe, 2 * index + 1) + queryCompositesUtil(st, mid + 1, se, qs, qe, 2 * index + 2); } /* A recursive function to update the nodes which have the given index in their range. The following are parameters st, si, ss and se are same as getSumUtil() i --> index of the element to be updated. This index is in input array. diff --> Value to be added to all nodes which have i in range */ function updateValueUtil(st, ss, se, i, diff, si) { // Base Case: If the input index // lies outside the range of // this segment if (i < ss || i > se) return ; // If the input index is in range of // this node, then update the value of // the node and its children st[si] = st[si] + diff; if (se != ss) { let mid = getMid(ss, se); updateValueUtil(st, ss, mid, i, diff, 2 * si + 1); updateValueUtil(st, mid + 1, se, i, diff, 2 * si + 2); } } // The function to update a value in input // array and segment tree. It uses updateValueUtil() // to update the value in segment tree function updateValue(arr, st, n, i, new_val, isPrime) { // Check for erroneous input index if (i < 0 || i > n - 1) { document.write( "Invalid Input" ); return ; } let diff = 0, oldValue; oldValue = arr[i]; // Update the value in array arr[i] = new_val; // Case 1: Old and new values both are primes if (isPrime[oldValue] && isPrime[new_val]) return ; // Case 2: Old and new values both composite if ((!isPrime[oldValue]) && (!isPrime[new_val])) return ; // Case 3: Old value was composite, new value is prime if (!isPrime[oldValue] && isPrime[new_val]) { diff = -1; } // Case 4: Old value was prime, new_val is composite if (isPrime[oldValue] && !isPrime[new_val]) { diff = 1; } // Update the values of nodes in segment tree updateValueUtil(st, 0, n - 1, i, diff, 0); } // Return number of composite numbers in range // from index qs (query start) to qe (query end). // It mainly uses queryCompositesUtil() function queryComposites(st, n, qs, qe) { let compositesInRange = queryCompositesUtil(st, 0, n - 1, qs, qe, 0); document.write( "Number of Composites in subarray from " + qs + " to " + qe + " = " + compositesInRange + "</br>" ); } // A recursive function that constructs Segment Tree // for array[ss..se]. // si is index of current node in segment tree st function constructSTUtil(arr, ss, se, st, si, isPrime) { // If there is one element in array, check if it // is prime then store 1 in the segment tree else // store 0 and return if (ss == se) { // if arr[ss] is composite if (!isPrime[arr[ss]]) st[si] = 1; else st[si] = 0; return st[si]; } // If there are more than one elements, then recur // for left and right subtrees and store the sum // of the two values in this node let mid = getMid(ss, se); st[si] = constructSTUtil(arr, ss, mid, st, si * 2 + 1, isPrime) + constructSTUtil(arr, mid + 1, se, st, si * 2 + 2, isPrime); return st[si]; } /* Function to construct segment tree from given array. This function allocates memory for segment tree and calls constructSTUtil() to fill the allocated memory */ function constructST(arr, n, isPrime) { // Allocate memory for segment tree // Height of segment tree let x = (Math.ceil(Math.log(n) / Math.log(2))); // Maximum size of segment tree let max_size = 2 * Math.pow(2, x) - 1; let st = new Array(max_size); // Fill the allocated memory st constructSTUtil(arr, 0, n - 1, st, 0, isPrime); // Return the constructed segment tree return st; } let arr = [ 1, 12, 3, 5, 17, 9 ]; let n = arr.length; /* Preprocess all primes till MAX. Create a boolean array "isPrime[0..MAX]". A value in prime[i] will finally be false if i is composite, else true. */ let isPrime = new Array(MAX + 1); for (let a = 0; a < MAX + 1; a++) { isPrime[a] = true ; } sieveOfEratosthenes(isPrime); // Build segment tree from given array let st = constructST(arr, n, isPrime); // Query 1: Query(start = 0, end = 4) let start = 0; let end = 4; queryComposites(st, n, start, end); // Query 2: Update(i = 3, x = 6), i.e Update // a[i] to x let i = 3; let x = 6; updateValue(arr, st, n, i, x, isPrime); // Query 3: Query(start = 0, end = 4) start = 0; end = 4; queryComposites(st, n, start, end); // This code is contributed by suresh07. </script> |
Number of Composites in subarray from 0 to 4 = 1 Number of Composites in subarray from 0 to 4 = 2
The time complexity of each query and update is O(logn) and that of building the segment tree is O(n)
Note: Here, the time complexity of pre-processing primes till MAX using the sieve of Eratosthenes is O(MAX log(log(MAX))) where MAX is the maximum value arri can take.
Auxiliary Space: O(n)