Saturday, January 11, 2025
Google search engine
HomeLanguagesDynamic ProgrammingQueries for bitwise OR in the given matrix

Queries for bitwise OR in the given matrix

Given an N * N matrix mat[][] consisting of non-negative integers and some queries consisting of top-left and bottom-right corner of the sub-matrix, the task is to find the bit-wise OR of all the elements of the sub-matrix given in each query.
Examples: 
 

Input: mat[][] = { 
{1, 2, 3}, 
{4, 5, 6}, 
{7, 8, 9}}, 
q[] = {{1, 1, 1, 1}, {1, 2, 2, 2}} 
Output: 

15 
Query 1: Only element in the sub-matrix is 5. 
Query 2: 6 OR 9 = 15
Input: mat[][] = { 
{12, 23, 13}, 
{41, 15, 46}, 
{75, 82, 123}}, 
q[] = {{0, 0, 2, 2}, {1, 1, 2, 1}} 
Output: 
127 
95 
 

 

Naive approach: Iterate through the sub-matrix and find the bit-wise OR of all the numbers in that range. This will take O(n2) time for each query in the worst case.
Efficient approach: If we look at the integers as a binary number, we can easily see that condition for ith bit of our answer to be set is that ith bit of at least one integer in the sub-matrix is set. 
So, we will calculate the prefix count for each bit. We will use this to find the number of integers in the sub-matrix with ith bit set. If it is non-zero then the ith bit of our answer will also be set. 
For this, we will create a 3d-array, prefix_count[][][] where prefix_count[i][x][y] will store the count of all the elements of the sub-matrix with top left corner at {0, 0} and bottom right corner at {x, y} and ith bit set. Refer 
this article to understand prefix_count in case of matrix.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
#define bitscount 32
#define n 3
using namespace std;
 
// Array to store bit-wise
// prefix count
int prefix_count[bitscount][n][n];
 
// Function to find the prefix sum
void findPrefixCount(int arr[][n])
{
 
    // Loop for each bit
    for (int i = 0; i < bitscount; i++) {
 
        // Loop to find prefix-count
        // for each row
        for (int j = 0; j < n; j++) {
            prefix_count[i][j][0] = ((arr[j][0] >> i) & 1);
            for (int k = 1; k < n; k++) {
                prefix_count[i][j][k] = ((arr[j][k] >> i) & 1);
                prefix_count[i][j][k] += prefix_count[i][j][k - 1];
            }
        }
    }
 
    // Finding column-wise prefix
    // count
    for (int i = 0; i < bitscount; i++)
        for (int j = 1; j < n; j++)
            for (int k = 0; k < n; k++)
                prefix_count[i][j][k] += prefix_count[i][j - 1][k];
}
 
// Function to return the result for a query
int rangeOr(int x1, int y1, int x2, int y2)
{
 
    // To store the answer
    int ans = 0;
 
    // Loop for each bit
    for (int i = 0; i < bitscount; i++) {
 
        // To store the number of variables
        // with ith bit set
        int p;
        if (x1 == 0 and y1 == 0)
            p = prefix_count[i][x2][y2];
        else if (x1 == 0)
            p = prefix_count[i][x2][y2]
                - prefix_count[i][x2][y1 - 1];
        else if (y1 == 0)
            p = prefix_count[i][x2][y2]
                - prefix_count[i][x1 - 1][y2];
        else
            p = prefix_count[i][x2][y2]
                - prefix_count[i][x1 - 1][y2]
                - prefix_count[i][x2][y1 - 1]
                + prefix_count[i][x1 - 1][y1 - 1];
 
        // If count of variables with ith bit
        // set is greater than 0
        if (p != 0)
            ans = (ans | (1 << i));
    }
 
    return ans;
}
 
// Driver code
int main()
{
    int arr[][n] = { { 1, 2, 3 },
                     { 4, 5, 6 },
                     { 7, 8, 9 } };
 
    findPrefixCount(arr);
 
    int queries[][4] = { { 1, 1, 1, 1 }, { 1, 2, 2, 2 } };
    int q = sizeof(queries) / sizeof(queries[0]);
 
    for (int i = 0; i < q; i++)
        cout << rangeOr(queries[i][0],
                        queries[i][1],
                        queries[i][2],
                        queries[i][3])
             << endl;
 
    return 0;
}


Java




// Java implementation of the approach
 
class GFG
{
 
    final static int bitscount = 32 ;
    final static int n = 3 ;
 
    // Array to store bit-wise
    // prefix count
    static int prefix_count[][][] = new int [bitscount][n][n];
     
    // Function to find the prefix sum
    static void findPrefixCount(int arr[][])
    {
     
        // Loop for each bit
        for (int i = 0; i < bitscount; i++)
        {
     
            // Loop to find prefix-count
            // for each row
            for (int j = 0; j < n; j++)
            {
                prefix_count[i][j][0] = ((arr[j][0] >> i) & 1);
                for (int k = 1; k < n; k++)
                {
                    prefix_count[i][j][k] = ((arr[j][k] >> i) & 1);
                    prefix_count[i][j][k] += prefix_count[i][j][k - 1];
                }
            }
        }
     
        // Finding column-wise prefix
        // count
        for (int i = 0; i < bitscount; i++)
            for (int j = 1; j < n; j++)
                for (int k = 0; k < n; k++)
                    prefix_count[i][j][k] += prefix_count[i][j - 1][k];
    }
     
    // Function to return the result for a query
    static int rangeOr(int x1, int y1, int x2, int y2)
    {
     
        // To store the answer
        int ans = 0;
     
        // Loop for each bit
        for (int i = 0; i < bitscount; i++)
        {
     
            // To store the number of variables
            // with ith bit set
            int p;
            if (x1 == 0 && y1 == 0)
                p = prefix_count[i][x2][y2];
            else if (x1 == 0)
                p = prefix_count[i][x2][y2]
                    - prefix_count[i][x2][y1 - 1];
            else if (y1 == 0)
                p = prefix_count[i][x2][y2]
                    - prefix_count[i][x1 - 1][y2];
            else
                p = prefix_count[i][x2][y2]
                    - prefix_count[i][x1 - 1][y2]
                    - prefix_count[i][x2][y1 - 1]
                    + prefix_count[i][x1 - 1][y1 - 1];
     
            // If count of variables with ith bit
            // set is greater than 0
            if (p != 0)
                ans = (ans | (1 << i));
        }
     
        return ans;
    }
     
    // Driver code
    public static void main (String[] args)
    {
        int arr[][] = { { 1, 2, 3 },
                        { 4, 5, 6 },
                        { 7, 8, 9 } };
     
        findPrefixCount(arr);
     
        int queries[][] = { { 1, 1, 1, 1 }, { 1, 2, 2, 2 } };
        int q = queries.length;
     
        for (int i = 0; i < q; i++)
            System.out.println( rangeOr(queries[i][0],
                            queries[i][1],
                            queries[i][2],
                            queries[i][3]) );
    }
}
 
// This code is contributed by AnkitRai


Python3




# Python 3 implementation of the approach
bitscount = 32
n = 3
# Array to store bit-wise
# prefix count
prefix_count = [[[0 for i in range(n)] for j in range(n)] for k in range(bitscount)]
 
# Function to find the prefix sum
def findPrefixCount(arr):
    # Loop for each bit
    for i in range(bitscount):
        # Loop to find prefix-count
        # for each row
        for j in range(n):
            prefix_count[i][j][0] = ((arr[j][0] >> i) & 1)
            for k in range(1,n):
                prefix_count[i][j][k] = ((arr[j][k] >> i) & 1)
                prefix_count[i][j][k] += prefix_count[i][j][k - 1]
 
    # Finding column-wise prefix
    # count
    for i in range(bitscount):
        for j in range(1,n):
            for k in range(n):
                prefix_count[i][j][k] += prefix_count[i][j - 1][k]
 
# Function to return the result for a query
def rangeOr(x1, y1, x2, y2):
    # To store the answer
    ans = 0
 
    # Loop for each bit
    for i in range(bitscount):
        # To store the number of variables
        # with ith bit set
        if (x1 == 0 and y1 == 0):
            p = prefix_count[i][x2][y2]
        elif (x1 == 0):
            p = prefix_count[i][x2][y2] - prefix_count[i][x2][y1 - 1]
        elif (y1 == 0):
            p = prefix_count[i][x2][y2] - prefix_count[i][x1 - 1][y2]
        else:
            p = prefix_count[i][x2][y2] - prefix_count[i][x1 - 1][y2] - prefix_count[i][x2][y1 - 1] + prefix_count[i][x1 - 1][y1 - 1];
 
        # If count of variables with ith bit
        # set is greater than 0
        if (p != 0):
            ans = (ans | (1 << i))
 
    return ans
 
# Driver code
if __name__ == '__main__':
    arr =  [[1, 2, 3],
            [4, 5, 6],
            [7, 8, 9]]
 
    findPrefixCount(arr)
    queries = [[1, 1, 1, 1],
                        [1, 2, 2, 2]]
    q = len(queries)
 
    for i in range(q):
        print(rangeOr(queries[i][0],queries[i][1],queries[i][2],queries[i][3]))
         
# This code is contributed by
# Surendra_Gangwar


C#




// C# implementation of the approach
using System;
     
class GFG
{
 
    static int bitscount = 32 ;
    static int n = 3 ;
 
    // Array to store bit-wise
    // prefix count
    static int [,,]prefix_count = new int [bitscount,n,n];
     
    // Function to find the prefix sum
    static void findPrefixCount(int [,]arr)
    {
     
        // Loop for each bit
        for (int i = 0; i < bitscount; i++)
        {
     
            // Loop to find prefix-count
            // for each row
            for (int j = 0; j < n; j++)
            {
                prefix_count[i,j,0] = ((arr[j,0] >> i) & 1);
                for (int k = 1; k < n; k++)
                {
                    prefix_count[i, j, k] = ((arr[j, k] >> i) & 1);
                    prefix_count[i, j, k] += prefix_count[i, j, k - 1];
                }
            }
        }
     
        // Finding column-wise prefix
        // count
        for (int i = 0; i < bitscount; i++)
            for (int j = 1; j < n; j++)
                for (int k = 0; k < n; k++)
                    prefix_count[i, j, k] += prefix_count[i, j - 1, k];
    }
     
    // Function to return the result for a query
    static int rangeOr(int x1, int y1, int x2, int y2)
    {
     
        // To store the answer
        int ans = 0;
     
        // Loop for each bit
        for (int i = 0; i < bitscount; i++)
        {
     
            // To store the number of variables
            // with ith bit set
            int p;
            if (x1 == 0 && y1 == 0)
                p = prefix_count[i, x2, y2];
            else if (x1 == 0)
                p = prefix_count[i, x2, y2]
                    - prefix_count[i, x2, y1 - 1];
            else if (y1 == 0)
                p = prefix_count[i, x2, y2]
                    - prefix_count[i, x1 - 1, y2];
            else
                p = prefix_count[i, x2, y2]
                    - prefix_count[i, x1 - 1, y2]
                    - prefix_count[i, x2, y1 - 1]
                    + prefix_count[i, x1 - 1, y1 - 1];
     
            // If count of variables with ith bit
            // set is greater than 0
            if (p != 0)
                ans = (ans | (1 << i));
        }
     
        return ans;
    }
     
    // Driver code
    public static void Main (String[] args)
    {
        int [,]arr = { { 1, 2, 3 },
                        { 4, 5, 6 },
                        { 7, 8, 9 } };
     
        findPrefixCount(arr);
     
        int [,]queries = { { 1, 1, 1, 1 }, { 1, 2, 2, 2 } };
        int q = queries.GetLength(0);
     
        for (int i = 0; i < q; i++)
            Console.WriteLine( rangeOr(queries[i,0],
                            queries[i,1],
                            queries[i,2],
                            queries[i,3]) );
    }
}
 
/* This code contributed by PrinciRaj1992 */


Javascript




<script>
 
// Javascript implementation of the approach
 
const bitscount = 32;
const n = 3;
 
// Array to store bit-wise
// prefix count
let prefix_count = new Array(bitscount);
for (let i = 0; i < bitscount; i++) {
    prefix_count[i] = new Array(n);
    for (let j = 0; j < n; j++)
        prefix_count[i][j] = new Array(n);
}
 
// Function to find the prefix sum
function findPrefixCount(arr)
{
 
    // Loop for each bit
    for (let i = 0; i < bitscount; i++)
    {
 
        // Loop to find prefix-count
        // for each row
        for (let j = 0; j < n; j++) {
            prefix_count[i][j][0] =
            ((arr[j][0] >> i) & 1);
            for (let k = 1; k < n; k++)
            {
                prefix_count[i][j][k] =
                ((arr[j][k] >> i) & 1);
                prefix_count[i][j][k] +=
                prefix_count[i][j][k - 1];
            }
        }
    }
 
    // Finding column-wise prefix
    // count
    for (let i = 0; i < bitscount; i++)
        for (let j = 1; j < n; j++)
            for (let k = 0; k < n; k++)
                prefix_count[i][j][k] +=
                prefix_count[i][j - 1][k];
}
 
// Function to return the result for a query
function rangeOr(x1, y1, x2, y2)
{
 
    // To store the answer
    let ans = 0;
 
    // Loop for each bit
    for (let i = 0; i < bitscount; i++) {
 
        // To store the number of variables
        // with ith bit set
        let p;
        if (x1 == 0 && y1 == 0)
            p = prefix_count[i][x2][y2];
        else if (x1 == 0)
            p = prefix_count[i][x2][y2]
                - prefix_count[i][x2][y1 - 1];
        else if (y1 == 0)
            p = prefix_count[i][x2][y2]
                - prefix_count[i][x1 - 1][y2];
        else
            p = prefix_count[i][x2][y2]
                - prefix_count[i][x1 - 1][y2]
                - prefix_count[i][x2][y1 - 1]
                + prefix_count[i][x1 - 1][y1 - 1];
 
        // If count of variables with ith bit
        // set is greater than 0
        if (p != 0)
            ans = (ans | (1 << i));
    }
 
    return ans;
}
 
// Driver code
    let arr = [ [ 1, 2, 3 ],
                     [ 4, 5, 6 ],
                     [ 7, 8, 9 ] ];
 
    findPrefixCount(arr);
 
    let queries = [ [ 1, 1, 1, 1 ], [ 1, 2, 2, 2 ] ];
    let q = queries.length;
 
    for (let i = 0; i < q; i++)
        document.write(rangeOr(queries[i][0],
                        queries[i][1],
                        queries[i][2],
                        queries[i][3]) + "<br>");
 
</script>


Output: 

5
15

 

Time complexity for pre-computation is O(n2) and each query can be answered in O(1)

Auxiliary Space: O(n2)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments