Given an N * N matrix mat[][] consisting of non-negative integers and some queries consisting of top-left and bottom-right corner of the sub-matrix, the task is to find the bit-wise OR of all the elements of the sub-matrix given in each query.
Examples:
Input: mat[][] = {
{1, 2, 3},
{4, 5, 6},
{7, 8, 9}},
q[] = {{1, 1, 1, 1}, {1, 2, 2, 2}}
Output:
5
15
Query 1: Only element in the sub-matrix is 5.
Query 2: 6 OR 9 = 15
Input: mat[][] = {
{12, 23, 13},
{41, 15, 46},
{75, 82, 123}},
q[] = {{0, 0, 2, 2}, {1, 1, 2, 1}}
Output:
127
95
Naive approach: Iterate through the sub-matrix and find the bit-wise OR of all the numbers in that range. This will take O(n2) time for each query in the worst case.
Efficient approach: If we look at the integers as a binary number, we can easily see that condition for ith bit of our answer to be set is that ith bit of at least one integer in the sub-matrix is set.
So, we will calculate the prefix count for each bit. We will use this to find the number of integers in the sub-matrix with ith bit set. If it is non-zero then the ith bit of our answer will also be set.
For this, we will create a 3d-array, prefix_count[][][] where prefix_count[i][x][y] will store the count of all the elements of the sub-matrix with top left corner at {0, 0} and bottom right corner at {x, y} and ith bit set. Refer
this article to understand prefix_count in case of matrix.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> #define bitscount 32 #define n 3 using namespace std; // Array to store bit-wise // prefix count int prefix_count[bitscount][n][n]; // Function to find the prefix sum void findPrefixCount( int arr[][n]) { // Loop for each bit for ( int i = 0; i < bitscount; i++) { // Loop to find prefix-count // for each row for ( int j = 0; j < n; j++) { prefix_count[i][j][0] = ((arr[j][0] >> i) & 1); for ( int k = 1; k < n; k++) { prefix_count[i][j][k] = ((arr[j][k] >> i) & 1); prefix_count[i][j][k] += prefix_count[i][j][k - 1]; } } } // Finding column-wise prefix // count for ( int i = 0; i < bitscount; i++) for ( int j = 1; j < n; j++) for ( int k = 0; k < n; k++) prefix_count[i][j][k] += prefix_count[i][j - 1][k]; } // Function to return the result for a query int rangeOr( int x1, int y1, int x2, int y2) { // To store the answer int ans = 0; // Loop for each bit for ( int i = 0; i < bitscount; i++) { // To store the number of variables // with ith bit set int p; if (x1 == 0 and y1 == 0) p = prefix_count[i][x2][y2]; else if (x1 == 0) p = prefix_count[i][x2][y2] - prefix_count[i][x2][y1 - 1]; else if (y1 == 0) p = prefix_count[i][x2][y2] - prefix_count[i][x1 - 1][y2]; else p = prefix_count[i][x2][y2] - prefix_count[i][x1 - 1][y2] - prefix_count[i][x2][y1 - 1] + prefix_count[i][x1 - 1][y1 - 1]; // If count of variables with ith bit // set is greater than 0 if (p != 0) ans = (ans | (1 << i)); } return ans; } // Driver code int main() { int arr[][n] = { { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } }; findPrefixCount(arr); int queries[][4] = { { 1, 1, 1, 1 }, { 1, 2, 2, 2 } }; int q = sizeof (queries) / sizeof (queries[0]); for ( int i = 0; i < q; i++) cout << rangeOr(queries[i][0], queries[i][1], queries[i][2], queries[i][3]) << endl; return 0; } |
Java
// Java implementation of the approach class GFG { final static int bitscount = 32 ; final static int n = 3 ; // Array to store bit-wise // prefix count static int prefix_count[][][] = new int [bitscount][n][n]; // Function to find the prefix sum static void findPrefixCount( int arr[][]) { // Loop for each bit for ( int i = 0 ; i < bitscount; i++) { // Loop to find prefix-count // for each row for ( int j = 0 ; j < n; j++) { prefix_count[i][j][ 0 ] = ((arr[j][ 0 ] >> i) & 1 ); for ( int k = 1 ; k < n; k++) { prefix_count[i][j][k] = ((arr[j][k] >> i) & 1 ); prefix_count[i][j][k] += prefix_count[i][j][k - 1 ]; } } } // Finding column-wise prefix // count for ( int i = 0 ; i < bitscount; i++) for ( int j = 1 ; j < n; j++) for ( int k = 0 ; k < n; k++) prefix_count[i][j][k] += prefix_count[i][j - 1 ][k]; } // Function to return the result for a query static int rangeOr( int x1, int y1, int x2, int y2) { // To store the answer int ans = 0 ; // Loop for each bit for ( int i = 0 ; i < bitscount; i++) { // To store the number of variables // with ith bit set int p; if (x1 == 0 && y1 == 0 ) p = prefix_count[i][x2][y2]; else if (x1 == 0 ) p = prefix_count[i][x2][y2] - prefix_count[i][x2][y1 - 1 ]; else if (y1 == 0 ) p = prefix_count[i][x2][y2] - prefix_count[i][x1 - 1 ][y2]; else p = prefix_count[i][x2][y2] - prefix_count[i][x1 - 1 ][y2] - prefix_count[i][x2][y1 - 1 ] + prefix_count[i][x1 - 1 ][y1 - 1 ]; // If count of variables with ith bit // set is greater than 0 if (p != 0 ) ans = (ans | ( 1 << i)); } return ans; } // Driver code public static void main (String[] args) { int arr[][] = { { 1 , 2 , 3 }, { 4 , 5 , 6 }, { 7 , 8 , 9 } }; findPrefixCount(arr); int queries[][] = { { 1 , 1 , 1 , 1 }, { 1 , 2 , 2 , 2 } }; int q = queries.length; for ( int i = 0 ; i < q; i++) System.out.println( rangeOr(queries[i][ 0 ], queries[i][ 1 ], queries[i][ 2 ], queries[i][ 3 ]) ); } } // This code is contributed by AnkitRai |
Python3
# Python 3 implementation of the approach bitscount = 32 n = 3 # Array to store bit-wise # prefix count prefix_count = [[[ 0 for i in range (n)] for j in range (n)] for k in range (bitscount)] # Function to find the prefix sum def findPrefixCount(arr): # Loop for each bit for i in range (bitscount): # Loop to find prefix-count # for each row for j in range (n): prefix_count[i][j][ 0 ] = ((arr[j][ 0 ] >> i) & 1 ) for k in range ( 1 ,n): prefix_count[i][j][k] = ((arr[j][k] >> i) & 1 ) prefix_count[i][j][k] + = prefix_count[i][j][k - 1 ] # Finding column-wise prefix # count for i in range (bitscount): for j in range ( 1 ,n): for k in range (n): prefix_count[i][j][k] + = prefix_count[i][j - 1 ][k] # Function to return the result for a query def rangeOr(x1, y1, x2, y2): # To store the answer ans = 0 # Loop for each bit for i in range (bitscount): # To store the number of variables # with ith bit set if (x1 = = 0 and y1 = = 0 ): p = prefix_count[i][x2][y2] elif (x1 = = 0 ): p = prefix_count[i][x2][y2] - prefix_count[i][x2][y1 - 1 ] elif (y1 = = 0 ): p = prefix_count[i][x2][y2] - prefix_count[i][x1 - 1 ][y2] else : p = prefix_count[i][x2][y2] - prefix_count[i][x1 - 1 ][y2] - prefix_count[i][x2][y1 - 1 ] + prefix_count[i][x1 - 1 ][y1 - 1 ]; # If count of variables with ith bit # set is greater than 0 if (p ! = 0 ): ans = (ans | ( 1 << i)) return ans # Driver code if __name__ = = '__main__' : arr = [[ 1 , 2 , 3 ], [ 4 , 5 , 6 ], [ 7 , 8 , 9 ]] findPrefixCount(arr) queries = [[ 1 , 1 , 1 , 1 ], [ 1 , 2 , 2 , 2 ]] q = len (queries) for i in range (q): print (rangeOr(queries[i][ 0 ],queries[i][ 1 ],queries[i][ 2 ],queries[i][ 3 ])) # This code is contributed by # Surendra_Gangwar |
C#
// C# implementation of the approach using System; class GFG { static int bitscount = 32 ; static int n = 3 ; // Array to store bit-wise // prefix count static int [,,]prefix_count = new int [bitscount,n,n]; // Function to find the prefix sum static void findPrefixCount( int [,]arr) { // Loop for each bit for ( int i = 0; i < bitscount; i++) { // Loop to find prefix-count // for each row for ( int j = 0; j < n; j++) { prefix_count[i,j,0] = ((arr[j,0] >> i) & 1); for ( int k = 1; k < n; k++) { prefix_count[i, j, k] = ((arr[j, k] >> i) & 1); prefix_count[i, j, k] += prefix_count[i, j, k - 1]; } } } // Finding column-wise prefix // count for ( int i = 0; i < bitscount; i++) for ( int j = 1; j < n; j++) for ( int k = 0; k < n; k++) prefix_count[i, j, k] += prefix_count[i, j - 1, k]; } // Function to return the result for a query static int rangeOr( int x1, int y1, int x2, int y2) { // To store the answer int ans = 0; // Loop for each bit for ( int i = 0; i < bitscount; i++) { // To store the number of variables // with ith bit set int p; if (x1 == 0 && y1 == 0) p = prefix_count[i, x2, y2]; else if (x1 == 0) p = prefix_count[i, x2, y2] - prefix_count[i, x2, y1 - 1]; else if (y1 == 0) p = prefix_count[i, x2, y2] - prefix_count[i, x1 - 1, y2]; else p = prefix_count[i, x2, y2] - prefix_count[i, x1 - 1, y2] - prefix_count[i, x2, y1 - 1] + prefix_count[i, x1 - 1, y1 - 1]; // If count of variables with ith bit // set is greater than 0 if (p != 0) ans = (ans | (1 << i)); } return ans; } // Driver code public static void Main (String[] args) { int [,]arr = { { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } }; findPrefixCount(arr); int [,]queries = { { 1, 1, 1, 1 }, { 1, 2, 2, 2 } }; int q = queries.GetLength(0); for ( int i = 0; i < q; i++) Console.WriteLine( rangeOr(queries[i,0], queries[i,1], queries[i,2], queries[i,3]) ); } } /* This code contributed by PrinciRaj1992 */ |
Javascript
<script> // Javascript implementation of the approach const bitscount = 32; const n = 3; // Array to store bit-wise // prefix count let prefix_count = new Array(bitscount); for (let i = 0; i < bitscount; i++) { prefix_count[i] = new Array(n); for (let j = 0; j < n; j++) prefix_count[i][j] = new Array(n); } // Function to find the prefix sum function findPrefixCount(arr) { // Loop for each bit for (let i = 0; i < bitscount; i++) { // Loop to find prefix-count // for each row for (let j = 0; j < n; j++) { prefix_count[i][j][0] = ((arr[j][0] >> i) & 1); for (let k = 1; k < n; k++) { prefix_count[i][j][k] = ((arr[j][k] >> i) & 1); prefix_count[i][j][k] += prefix_count[i][j][k - 1]; } } } // Finding column-wise prefix // count for (let i = 0; i < bitscount; i++) for (let j = 1; j < n; j++) for (let k = 0; k < n; k++) prefix_count[i][j][k] += prefix_count[i][j - 1][k]; } // Function to return the result for a query function rangeOr(x1, y1, x2, y2) { // To store the answer let ans = 0; // Loop for each bit for (let i = 0; i < bitscount; i++) { // To store the number of variables // with ith bit set let p; if (x1 == 0 && y1 == 0) p = prefix_count[i][x2][y2]; else if (x1 == 0) p = prefix_count[i][x2][y2] - prefix_count[i][x2][y1 - 1]; else if (y1 == 0) p = prefix_count[i][x2][y2] - prefix_count[i][x1 - 1][y2]; else p = prefix_count[i][x2][y2] - prefix_count[i][x1 - 1][y2] - prefix_count[i][x2][y1 - 1] + prefix_count[i][x1 - 1][y1 - 1]; // If count of variables with ith bit // set is greater than 0 if (p != 0) ans = (ans | (1 << i)); } return ans; } // Driver code let arr = [ [ 1, 2, 3 ], [ 4, 5, 6 ], [ 7, 8, 9 ] ]; findPrefixCount(arr); let queries = [ [ 1, 1, 1, 1 ], [ 1, 2, 2, 2 ] ]; let q = queries.length; for (let i = 0; i < q; i++) document.write(rangeOr(queries[i][0], queries[i][1], queries[i][2], queries[i][3]) + "<br>" ); </script> |
5 15
Time complexity for pre-computation is O(n2) and each query can be answered in O(1)
Auxiliary Space: O(n2)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!