Sunday, December 29, 2024
Google search engine
HomeData Modelling & AIQuadratic Probing in Hashing

Quadratic Probing in Hashing

Hashing is an improvement technique over the Direct Access Table. The idea is to use a hash function that converts a given phone number or any other key to a smaller number and uses the small number as the index in a table called a hash table

Hash Function: 

A function that converts a given big number to a small practical integer value. The mapped integer value is used as an index in the hash table. In simple terms, a hash function maps a big number or string to a small integer that can be used as an index in the hash table. In this article, the collision technique, quadratic probing is discussed:

Quadratic Probing: 

Quadratic probing is an open-addressing scheme where we look for the i2‘th slot in the i’th iteration if the given hash value x collides in the hash table. 

How Quadratic Probing is done? 

Let hash(x) be the slot index computed using the hash function.

  • If the slot hash(x) % S is full, then we try (hash(x) + 1*1) % S.
  • If (hash(x) + 1*1) % S is also full, then we try (hash(x) + 2*2) % S.
  • If (hash(x) + 2*2) % S is also full, then we try (hash(x) + 3*3) % S.
  • This process is repeated for all the values of i until an empty slot is found.

For example: Let us consider a simple hash function as “key mod 7” and  sequence of keys as 50, 700, 76, 85, 92, 73, 101

Below is the implementation of the above approach:

C++




// C++ implementation of
// the Quadratic Probing
#include <bits/stdc++.h>
using namespace std;
 
// Function to print an array
void printArray(int arr[], int n)
{
    // Iterating and printing the array
    for (int i = 0; i < n; i++) {
        cout << arr[i] << " ";
    }
}
 
// Function to implement the
// quadratic probing
void hashing(int table[], int tsize, int arr[], int N)
{
    // Iterating through the array
    for (int i = 0; i < N; i++) {
        // Computing the hash value
        int hv = arr[i] % tsize;
 
        // Insert in the table if there
        // is no collision
        if (table[hv] == -1)
            table[hv] = arr[i];
        else {
            // If there is a collision
            // iterating through all
            // possible quadratic values
            for (int j = 0; j < tsize; j++) {
                // Computing the new hash value
                int t = (hv + j * j) % tsize;
                if (table[t] == -1) {
                    // Break the loop after
                    // inserting the value
                    // in the table
                    table[t] = arr[i];
                    break;
                }
            }
        }
    }
    printArray(table, N);
}
 
// Driver code
int main()
{
    int arr[] = { 50, 700, 76, 85, 92, 73, 101 };
    int N = 7;
 
    // Size of the hash table
    int L = 7;
    int hash_table[7];
 
    // Initializing the hash table
    for (int i = 0; i < L; i++) {
        hash_table[i] = -1;
    }
 
    // Function call
    hashing(hash_table, L, arr, N);
    return 0;
}
 
// This code is contributed by gauravrajput1


Java




// Java implementation of the Quadratic Probing
 
class GFG {
 
    // Function to print an array
    static void printArray(int arr[])
    {
 
        // Iterating and printing the array
        for (int i = 0; i < arr.length; i++) {
            System.out.print(arr[i] + " ");
        }
    }
 
    // Function to implement the
    // quadratic probing
    static void hashing(int table[], int tsize, int arr[],
                        int N)
    {
 
        // Iterating through the array
        for (int i = 0; i < N; i++) {
 
            // Computing the hash value
            int hv = arr[i] % tsize;
 
            // Insert in the table if there
            // is no collision
            if (table[hv] == -1)
                table[hv] = arr[i];
            else {
 
                // If there is a collision
                // iterating through all
                // possible quadratic values
                for (int j = 0; j < tsize; j++) {
 
                    // Computing the new hash value
                    int t = (hv + j * j) % tsize;
                    if (table[t] == -1) {
 
                        // Break the loop after
                        // inserting the value
                        // in the table
                        table[t] = arr[i];
                        break;
                    }
                }
            }
        }
 
        printArray(table);
    }
 
    // Driver code
    public static void main(String args[])
    {
        int arr[] = { 50, 700, 76, 85, 92, 73, 101 };
        int N = 7;
 
        // Size of the hash table
        int L = 7;
        int hash_table[] = new int[L];
 
        // Initializing the hash table
        for (int i = 0; i < L; i++) {
            hash_table[i] = -1;
        }
 
        // Function call
        hashing(hash_table, L, arr, N);
    }
}


Python3




# Python3 implementation of
# the Quadratic Probing
 
# Function to print an array
 
 
def printArray(arr, n):
 
    # Iterating and printing the array
    for i in range(n):
        print(arr[i], end=" ")
 
# Function to implement the
# quadratic probing
 
 
def hashing(table, tsize, arr, N):
 
    # Iterating through the array
    for i in range(N):
 
        # Computing the hash value
        hv = arr[i] % tsize
 
        # Insert in the table if there
        # is no collision
        if (table[hv] == -1):
            table[hv] = arr[i]
 
        else:
 
            # If there is a collision
            # iterating through all
            # possible quadratic values
            for j in range(tsize):
 
                # Computing the new hash value
                t = (hv + j * j) % tsize
 
                if (table[t] == -1):
 
                    # Break the loop after
                    # inserting the value
                    # in the table
                    table[t] = arr[i]
                    break
 
    printArray(table, N)
 
 
# Driver code
if __name__ == "__main__":
    arr = [50, 700, 76,
           85, 92, 73, 101]
    N = 7
 
    # Size of the hash table
    L = 7
 
    hash_table = [0] * 7
 
    # Initializing the hash table
    for i in range(L):
        hash_table[i] = -1
 
    # Function call
    hashing(hash_table, L, arr, N)
 
# This code is contributed by code_hunt


C#




// C# implementation of the Quadratic Probing
using System;
 
class GFG {
 
    // Function to print an array
    static void printArray(int[] arr)
    {
 
        // Iterating and printing the array
        for (int i = 0; i < arr.Length; i++) {
            Console.Write(arr[i] + " ");
        }
    }
 
    // Function to implement the
    // quadratic probing
    static void hashing(int[] table, int tsize, int[] arr,
                        int N)
    {
 
        // Iterating through the array
        for (int i = 0; i < N; i++) {
 
            // Computing the hash value
            int hv = arr[i] % tsize;
 
            // Insert in the table if there
            // is no collision
            if (table[hv] == -1)
                table[hv] = arr[i];
            else {
 
                // If there is a collision
                // iterating through all
                // possible quadratic values
                for (int j = 0; j < tsize; j++) {
 
                    // Computing the new hash value
                    int t = (hv + j * j) % tsize;
                    if (table[t] == -1) {
 
                        // Break the loop after
                        // inserting the value
                        // in the table
                        table[t] = arr[i];
                        break;
                    }
                }
            }
        }
        printArray(table);
    }
 
    // Driver code
    public static void Main(String[] args)
    {
        int[] arr = { 50, 700, 76, 85, 92, 73, 101 };
        int N = 7;
 
        // Size of the hash table
        int L = 7;
        int[] hash_table = new int[L];
 
        // Initializing the hash table
        for (int i = 0; i < L; i++) {
            hash_table[i] = -1;
        }
 
        // Function call
        hashing(hash_table, L, arr, N);
    }
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
 
// Javascript implementation of the Quadratic Probing
 
    // Function to print an array
    function printArray(arr)
    {
   
        // Iterating and printing the array
        for (let i = 0; i < arr.length; i++) {
            document.write(arr[i] + " ");
        }
    }
   
    // Function to implement the
    // quadratic probing
    function hashing(table, tsize,
                        arr, N)
    {
   
        // Iterating through the array
        for (let i = 0; i < N; i++) {
   
            // Computing the hash value
            let hv = arr[i] % tsize;
   
            // Insert in the table if there
            // is no collision
            if (table[hv] == -1)
                table[hv] = arr[i];
            else {
   
                // If there is a collision
                // iterating through all
                // possible quadratic values
                for (let j = 0; j < tsize; j++) {
   
                    // Computing the new hash value
                    let t = (hv + j * j) % tsize;
                    if (table[t] == -1) {
   
                        // Break the loop after
                        // inserting the value
                        // in the table
                        table[t] = arr[i];
                        break;
                    }
                }
            }
        }
        printArray(table);
    }
      
    // Driver Code
    let arr = [ 50, 700, 76, 85,
                      92, 73, 101 ];
        let N = 7;
   
        // Size of the hash table
        let L = 7;
        let hash_table = [];
   
        // Initializing the hash table
        for (let i = 0; i < L; i++) {
            hash_table[i] = -1;
        }
   
        // Quadratic probing
        hashing(hash_table, L, arr, N);
 
// This code is contributed by splevel62.
</script>


Output

700 50 85 73 101 92 76 

Time Complexity: O(N * L), where N is the length of the array and L is the size of the hash table.
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments