Friday, November 14, 2025
HomeLanguagesPython – Wald Distribution in Statistics

Python – Wald Distribution in Statistics

scipy.stats.wald() is a Wald continuous random variable. It is inherited from the of generic methods as an instance of the rv_continuous class. It completes the methods with details specific for this particular distribution.

Parameters :

q : lower and upper tail probability
x : quantiles
loc : [optional]location parameter. Default = 0
scale : [optional]scale parameter. Default = 1
size : [tuple of ints, optional] shape or random variates.
moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).

Results : Wald continuous random variable

Code #1 : Creating Wald continuous random variable




# importing library
  
from scipy.stats import wald 
    
numargs = wald .numargs 
a, b = 0.2, 0.8
rv = wald (a, b) 
    
print ("RV : \n", rv)  


Output :

RV : 
 scipy.stats._distn_infrastructure.rv_frozen object at 0x000002A9D9B23A08

Code #2 : Wald continuous variates and probability distribution




import numpy as np 
quantile = np.arange (0.01, 1, 0.1
  
# Random Variates 
R = wald .rvs(a, b, size = 10
print ("Random Variates : \n", R) 
  
# PDF 
x = np.linspace(wald.ppf(0.01, a, b),
                wald.ppf(0.99, a, b), 10)
R = wald.pdf(x, 1, 3)
print ("\nProbability Distribution : \n", R) 


Output :

Random Variates : 
 [0.86094866 0.37974886 0.63409543 0.47948363 0.95200192 0.42239326
 3.37548889 0.80459557 0.49100462 0.42936524]

Probability Distribution : 
 [0.         0.         0.00249942 0.29697007 0.35310234 0.29911667
 0.23853841 0.18889796 0.15056847 0.12121175]

Code #3 : Graphical Representation.




import numpy as np 
import matplotlib.pyplot as plt 
     
distribution = np.linspace(0, np.minimum(rv.dist.b, 3)) 
print("Distribution : \n", distribution) 
     
plot = plt.plot(distribution, rv.pdf(distribution)) 


Output :

Distribution : 
 [0.         0.04081633 0.08163265 0.12244898 0.16326531 0.20408163
 0.24489796 0.28571429 0.32653061 0.36734694 0.40816327 0.44897959
 0.48979592 0.53061224 0.57142857 0.6122449  0.65306122 0.69387755
 0.73469388 0.7755102  0.81632653 0.85714286 0.89795918 0.93877551
 0.97959184 1.02040816 1.06122449 1.10204082 1.14285714 1.18367347
 1.2244898  1.26530612 1.30612245 1.34693878 1.3877551  1.42857143
 1.46938776 1.51020408 1.55102041 1.59183673 1.63265306 1.67346939
 1.71428571 1.75510204 1.79591837 1.83673469 1.87755102 1.91836735
 1.95918367 2.        ]
  

Code #4 : Varying Positional Arguments




import matplotlib.pyplot as plt 
import numpy as np 
  
x = np.linspace(0, 5, 100
     
# Varying positional arguments 
y1 = wald.pdf(x, a, b) 
y2 = wald.pdf(x, a, b) 
plt.plot(x, y1, "*", x, y2, "r--"


Output :

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32399 POSTS0 COMMENTS
Milvus
95 POSTS0 COMMENTS
Nango Kala
6765 POSTS0 COMMENTS
Nicole Veronica
11917 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11984 POSTS0 COMMENTS
Shaida Kate Naidoo
6889 POSTS0 COMMENTS
Ted Musemwa
7141 POSTS0 COMMENTS
Thapelo Manthata
6837 POSTS0 COMMENTS
Umr Jansen
6839 POSTS0 COMMENTS