Thursday, July 4, 2024
HomeLanguagesPythonPython – Uniform Discrete Distribution in Statistics

Python – Uniform Discrete Distribution in Statistics

scipy.stats.randint() is a uniform discrete random variable. It is inherited from the of generic methods as an instance of the rv_discrete class. It completes the methods with details specific for this particular distribution.

Parameters :

x : quantiles
loc : [optional]location parameter. Default = 0
scale : [optional]scale parameter. Default = 1
moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).

Results : uniform discrete random variable

Code #1 : Creating uniform discrete random variable




# importing library
  
from scipy.stats import randint 
    
numargs = randint .numargs 
a, b = 0.2, 0.8
rv = randint (a, b) 
    
print ("RV : \n", rv)  


Output :

RV : 
 scipy.stats._distn_infrastructure.rv_frozen object at 0x0000016A4D865848

Code #2 : uniform discrete variates and probability distribution




import numpy as np 
quantile = np.arange (0.01, 1, 0.1
  
# Random Variates 
R = randint .rvs(a, b, size = 10
print ("Random Variates : \n", R) 
  
# PDF 
x = np.linspace(randint.ppf(0.01, a, b),
                randint.ppf(0.99, a, b), 10)
R = randint.ppf(x, 1, 3)
print ("\nProbability Distribution : \n", R) 


Output :

Random Variates : 
 [ 3  0  0 15  0  1  4  2  0  6]

Probability Distribution : 
 [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]

Code #3 : Graphical Representation.




import numpy as np 
import matplotlib.pyplot as plt 
     
distribution = np.linspace(0, np.minimum(rv.dist.b, 2)) 
print("Distribution : \n", distribution) 
     
plot = plt.plot(distribution, rv.ppf(distribution)) 


Output :

Distribution : 
 [0.         0.04081633 0.08163265 0.12244898 0.16326531 0.20408163
 0.24489796 0.28571429 0.32653061 0.36734694 0.40816327 0.44897959
 0.48979592 0.53061224 0.57142857 0.6122449  0.65306122 0.69387755
 0.73469388 0.7755102  0.81632653 0.85714286 0.89795918 0.93877551
 0.97959184 1.02040816 1.06122449 1.10204082 1.14285714 1.18367347
 1.2244898  1.26530612 1.30612245 1.34693878 1.3877551  1.42857143
 1.46938776 1.51020408 1.55102041 1.59183673 1.63265306 1.67346939
 1.71428571 1.75510204 1.79591837 1.83673469 1.87755102 1.91836735
 1.95918367 2.        ]
  

Code #4 : Varying Positional Arguments




import matplotlib.pyplot as plt 
import numpy as np 
  
x = np.linspace(0, 5, 100
     
# Varying positional arguments 
y1 = randint.ppf(x, a, b) 
y2 = randint.pmf(x, a, b) 
plt.plot(x, y1, "*", x, y2, "r--"


Output :

Shaida Kate Naidoo
am passionate about learning the latest technologies available to developers in either a Front End or Back End capacity. I enjoy creating applications that are well designed and responsive, in addition to being user friendly. I thrive in fast paced environments. With a diverse educational and work experience background, I excel at collaborating with teams both local and international. A versatile developer with interests in Software Development and Software Engineering. I consider myself to be adaptable and a self motivated learner. I am interested in new programming technologies, and continuous self improvement.
RELATED ARTICLES

LEAVE A REPLY

Please enter your comment!
Please enter your name here

Most Popular

Recent Comments