Saturday, November 22, 2025
HomeLanguagesPython Tensorflow – tf.keras.layers.Conv1DTranspose() Function

Python Tensorflow – tf.keras.layers.Conv1DTranspose() Function

The tf.keras.layers.Conv1DTranspose() function is used to apply the transposed 1D convolution operation, also known as deconvolution, on data.

Syntax:tf.keras.layers.Conv1DTranspose( filters, kernel_size, strides=1, padding=’valid’, output_padding=None,   data_format=None, dilation_rate=1, activation=None, use_bias=True, kernel_initializer=’glorot_uniform’, bias_initializer=’zeros’, kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None,  **kwargs)

Input Shape: A 3D tensor of shape: (batch_size, steps, channels)

Output Shape: A 3D tensor of shape: (batch_size, new_steps, filters)

Parameters:

  • filters (Integer): The output space’s dimensionality (i.e. the number of output filters in the convolution).
  • kernel_size (Integer): The 1D convolution window’s integer length.
  • strides: The stride of the convolution along the time dimension.
  • padding: The padding mode.
  • output_padding:
  • data_format: The data format. This specifies the order in which the dimensions in the inputs are ordered. channels_last is the default value.
  • dilation_rate: In each dimension, the dilation rate to utilize for the dilated convolution. It should be an integer.
  • activation: The layer’s activation function.
  • use_bias (Boolean): If the layer has a bias vector or not. True is the default value.
  • kernel_initializer: The convolutional kernel weights matrix’s initializer.
  • bias_initializer: The bias vector’s initializer.
  • kernel_regularizer: The regularizer function applied to the kernel weights matrix.
  • bias_regularizer: The regularizer function applied to the bias vector.
  • activity_regularizer: The regularizer function applied to the activation.
  • kernel_constraint: The constraint for the convolutional kernel weights.
  • bias_constraint: The constraint for the bias vector.

Returns: A 3D tensor representing activation(conv1dtranspose(inputs, kernel) + bias).

Example 1:

Python3




import tensorflow as tf
  
tensor_shape=(4, 28, 1)
input_shape=tensor_shape[1:]
X=tf.random.normal(tensor_shape)
  
def model(input_shape):
    X_input=tf.keras.layers.Input(shape=input_shape)
    X_output=tf.keras.layers.Conv1DTranspose(filters=8
                                             kernel_size=4,
                                             strides=2)(X_input)
    model=tf.keras.models.Model(inputs=X_input, 
                                outputs=X_output)
    return model
    
model=model(input_shape)
  
Y=model.predict(X, steps=2)
print(Y.shape)


Output: 

(4, 58, 8)

Example 2:

Python3




import tensorflow as tf
  
tensor_shape = (4, 4, 1)
input_shape = tensor_shape[1:]
X = tf.random.normal(tensor_shape)
  
  
def model(input_shape):
    X_input = tf.keras.layers.Input(shape=input_shape)
    X_output = tf.keras.layers.Conv1DTranspose(
        filters=3, kernel_size=3, strides=1)(X_input)
    model = tf.keras.models.Model(inputs=X_input, outputs=X_output)
    return model
  
  
model = model(input_shape)
  
Y = model.predict(X, steps=2)
print(Y)


Output:

[[[-0.30124253 -0.36105427 -0.2042067 ]
 [ 0.02215503 -0.02281483  0.06209912]
 [ 0.00216722 -0.06402665 -0.45107672]
 [ 0.61782545  0.6981941   0.5305761 ]
 [ 0.38394764  0.49401727 -0.32046565]
 [-0.72445303 -0.70179087  0.51991314]]
[[-0.21620852 -0.25913674 -0.14656372]
 [-0.42101222 -0.5400373  -0.2516055 ]
 [ 1.1399035   1.2468109   0.51620144]
 [ 0.45842776  0.60374933 -0.43827266]
 [-0.996245   -0.97118413  0.717214  ]
 [ 0.03621851  0.03508553 -0.02599269]]
[[-0.23306094 -0.27933523 -0.15798767]
 [ 0.22609143  0.23278703  0.18968783]
 [ 0.2541324   0.2872892  -0.21050403]
 [ 0.47528732  0.6270335   0.680698  ]
 [ 0.05677184  0.1858277  -0.08888393]
 [-0.7763872  -0.75210047  0.5571844 ]]
[[ 1.2402442   1.4864949   0.8407385 ]
 [-0.580338   -0.49230838 -0.5872358 ]
 [-1.7384369  -1.8894652   0.76116455]
 [ 0.8071178   0.74401593 -0.37187982]
 [ 0.41134852  0.42184594 -0.30380705]
 [-0.13865426 -0.13431692  0.09950703]]]
Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32407 POSTS0 COMMENTS
Milvus
97 POSTS0 COMMENTS
Nango Kala
6784 POSTS0 COMMENTS
Nicole Veronica
11931 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11999 POSTS0 COMMENTS
Shaida Kate Naidoo
6907 POSTS0 COMMENTS
Ted Musemwa
7168 POSTS0 COMMENTS
Thapelo Manthata
6863 POSTS0 COMMENTS
Umr Jansen
6848 POSTS0 COMMENTS