Wednesday, January 21, 2026
HomeLanguagesPython | Tensorflow tan() method

Python | Tensorflow tan() method

Tensorflow is an open-source machine learning library developed by Google. One of its applications is to develop deep neural networks.

The module tensorflow.math provides support for many basic mathematical operations. Function tf.tan() [alias tf.math.tan] provides support for the tangent function in Tensorflow. It expects the input in radian form. The input type is tensor and if the input contains more than one element, element-wise tangent is computed.

Syntax: tf.tan(x, name=None) or tf.math.tan(x, name=None)

Parameters:
x: A tensor of any of the following types: float16, float32, float64, complex64, or complex128.
name (optional): The name for the operation.

Return type: A tensor with the same type as that of x.

Code #1:

Python3




# Importing the Tensorflow library
import tensorflow as tf
  
# A constant vector of size 6
a = tf.constant([1.0, -0.5, 3.4, -2.1, 0.0, -6.5],
                               dtype = tf.float32)
  
# Applying the tan function and
# storing the result in 'b'
b = tf.tan(a, name ='tan')
  
# Initiating a Tensorflow session
with tf.Session() as sess:
    print('Input type:', a)
    print('Input:', sess.run(a))
    print('Return type:', b)
    print('Output:', sess.run(b))


Output:

Input type: Tensor("Const:0", shape=(6, ), dtype=float32)
Input: [ 1.  -0.5  3.4 -2.1  0.  -6.5]
Return type: Tensor("tan:0", shape=(6, ), dtype=float32)
Output: [ 1.5574077 -0.5463025  0.264317   1.7098469  0.        -0.2202772]

 

Code #2: Visualization

Python3




# Importing the Tensorflow library
import tensorflow as tf
  
# Importing the NumPy library
import numpy as np
  
# Importing the matplotlib.pyplot function
import matplotlib.pyplot as plt
  
# A vector of size 15 with values from -1 to 1
a = np.linspace(-1, 1, 15)
  
# Applying the tangent function and
# storing the result in 'b'
b = tf.tan(a, name ='tan')
  
# Initiating a Tensorflow session
with tf.Session() as sess:
    print('Input:', a)
    print('Output:', sess.run(b))
    plt.plot(a, sess.run(b), color = 'red', marker = "o") 
    plt.title("tensorflow.tan") 
    plt.xlabel("X") 
    plt.ylabel("Y") 
  
    plt.show()


Output:

Input: [-1.         -0.85714286 -0.71428571 -0.57142857 -0.42857143 -0.28571429
 -0.14285714  0.          0.14285714  0.28571429  0.42857143  0.57142857
  0.71428571  0.85714286  1.        ]
Output: [-1.55740772 -1.15486601 -0.86700822 -0.64298589 -0.45689311 -0.29375136
 -0.14383696  0.          0.14383696  0.29375136  0.45689311  0.64298589
  0.86700822  1.15486601  1.55740772]

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32475 POSTS0 COMMENTS
Milvus
119 POSTS0 COMMENTS
Nango Kala
6847 POSTS0 COMMENTS
Nicole Veronica
11977 POSTS0 COMMENTS
Nokonwaba Nkukhwana
12064 POSTS0 COMMENTS
Shaida Kate Naidoo
6986 POSTS0 COMMENTS
Ted Musemwa
7220 POSTS0 COMMENTS
Thapelo Manthata
6933 POSTS0 COMMENTS
Umr Jansen
6912 POSTS0 COMMENTS