TensorFlow is open-source python library designed by Google to develop Machine Learning models and deep learning neural networks. TensorFlow raw_ops provides low level access to all TensorFlow operations. Cosh() is used to find element wise hyperbolic cosine of x.
Syntax: tf.raw_ops.Cosh(x, name)
Parameters:
- x: It’s the input tensor. Allowed dtype for this tensor are bfloat16, half, float32, float64.
- name(optional): It defines the name for the operation.
Returns: It returns a tensor of same dtype as x.
Note: It only takes keyword arguments.
Example 1:
Python3
| # Importing the libraryimporttensorflow as tf# Initializing the input tensora =tf.constant([1, 2, 3, 4, 5], dtype =tf.float64)# Printing the input tensorprint('Input: ', a)# Calculating hyperbolic cosineres =tf.raw_ops.Cosh(x =a)# Printing the resultprint('Result: ', res) | 
Output:
Input: tf.Tensor([1. 2. 3. 4. 5.], shape=(5, ), dtype=float64) Result: tf.Tensor([ 1.54308063 3.76219569 10.067662 27.30823284 74.20994852], shape=(5, ), dtype=float64)
Example 2: Visualization
Python3
| # importing the libraryimporttensorflow as tfimportmatplotlib.pyplot as plt# Initializing the input tensora =tf.constant([1, 2, 3, 4, 5], dtype =tf.float64)# Calculating hyperbolic cosineres =tf.raw_ops.Cosh(x =a)# Plotting the graphplt.plot(a, res, color ='green')plt.title('tensorflow.raw_ops.Cosh')plt.xlabel('Input')plt.ylabel('Result')plt.show() | 
Output:

 
                                    








