TensorFlow is open-source Python library designed by Google to develop Machine Learning models and deep learning neural networks.
top_k() is used to find top k largest entries for the last dimension(along each row for matrices).
Syntax: tensorflow.math.top_k(input, k, sorted, name)
Parameter:
- input: It’s the input Tensor with 1 or more dimensions.
- k(optional): It’s 0-D tensor with default value 0.
- sorted(optional): If it’s set to true returned elements will be sorted. Default is True.
- name(optional): It defines the name for the operation.
Returns:
- values: k largest elements along each last dimensional slice.
- indices: indices of values within the last dimension of input.
Example 1:
Python3
# importing the library import tensorflow as tf # Initializing the input tensor a = tf.constant([ 7 , 2 , 3 , 9 , 5 ], dtype = tf.float64) # Printing the input tensor print ( 'a: ' , a) # Calculating result res = tf.math.top_k(a) # Printing the result print ( 'Result: ' , res) |
Output:
a: tf.Tensor([7. 2. 3. 9. 5.], shape=(5, ), dtype=float64) Result: TopKV2(values=<tf.Tensor: shape=(1, ), dtype=float64, numpy=array([9.])>, indices=<tf.Tensor: shape=(1, ), dtype=int32, numpy=array([3], dtype=int32)>)
Example 2:
Python3
# importing the library import tensorflow as tf # Initializing the input tensor a = tf.constant([[ 7 , 2 , 3 ], [ 9 , 5 , 7 ]], dtype = tf.float64) # Printing the input tensor print ( 'a: ' , a) # Calculating result res = tf.math.top_k(a, k = 2 ) # Printing the result print ( 'Result: ' , res) |
Output:
a: tf.Tensor( [[7. 2. 3.] [9. 5. 7.]], shape=(2, 3), dtype=float64) Result: TopKV2(values=<tf.Tensor: shape=(2, 2), dtype=float64, numpy= array([[7., 3.], [9., 7.]])>, indices=<tf.Tensor: shape=(2, 2), dtype=int32, numpy= array([[0, 2], [0, 2]], dtype=int32)>)