Friday, December 27, 2024
Google search engine
HomeLanguagesPython – tensorflow.math.reduce_any()

Python – tensorflow.math.reduce_any()

TensorFlow is open-source Python library designed by Google to develop Machine Learning models and deep learning neural networks.

reduce_any() is used to compute the “logical or” of elements across dimensions of a tensor.

Syntax: tensorflow.math.reduce_any( input_tensor, axis, keepdims, name)

Parameters:

  • input_tensor: It is boolean tensor to reduce.
  • axis(optional): It represent the dimensions to  reduce. It’s value should be in range [-rank(input_tensor), rank(input_tensor)). If no value is given for this all dimensions are reduced.
  • keepdims(optional): It’s default value is False. If it’s set to True it will retain the reduced dimension with length 1.
  • name(optional): It defines the name for the operation.

Returns: It returns a tensor.

Example 1:

Python3




# importing the library
import tensorflow as tf
 
# Initializing the input tensor
a = tf.constant([True, False, False, True], dtype = tf.bool)
 
# Printing the input tensor
print('Input: ', a)
 
# Calculating result
res = tf.math.reduce_any(a)
 
# Printing the result
print('Result: ', res)


Output:

Input:  tf.Tensor([ True False False  True], shape=(4, ), dtype=bool)
Result:  tf.Tensor(True, shape=(), dtype=bool)

Example 2:

Python3




# importing the library
import tensorflow as tf
 
# Initializing the input tensor
a = tf.constant([[True, False], [False, True]], dtype = tf.bool)
 
# Printing the input tensor
print('Input: ', a)
 
# Calculating result
res = tf.math.reduce_any(a, axis = 1, keepdims = True)
 
# Printing the result
print('Result: ', res)


Output:

Input:  tf.Tensor(
[[ True False]
 [False  True]], shape=(2, 2), dtype=bool)
Result:  tf.Tensor(
[[ True]
 [ True]], shape=(2, 1), dtype=bool)

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments