TensorFlow is open-source python library designed by Google to develop Machine Learning models and deep learning neural networks. reciprocal() is used to find element wise reciprocal of x.
Syntax: tf.math.reciprocal(x, name)
Parameter:
- x: It’s the input tensor. Allowed dtype for this tensor are bfloat16, half, float32, float64, int32, int64, complex64, complex128.
- name(optional): It defines the name for the operation.
Returns: It returns a tensor of dtype same as x.
Example 1: This example uses reciprocal tensor.
Python3
# Importing the library import tensorflow as tf # Initializing the input tensor a = tf.constant([ 1 , 2 , - 3 , - 4 ], dtype = tf.float64) # Printing the input tensor print ( 'Input: ' , a) # Calculating result res = tf.math.reciprocal(a) # Printing the result print ( 'Result: ' , res) |
Output:
Input: tf.Tensor([ 1. 2. -3. -4.], shape=(4, ), dtype=float64) Result: tf.Tensor([ 1. 0.5 -0.33333333 -0.25 ], shape=(4, ), dtype=float64)
Example 2: This example uses complex tensor.
Python3
# importing the library import tensorflow as tf # Initializing the input tensor a = tf.constant([ 1 + 3j , 2 - 5j , - 3 + 7j , - 4 - 8j ], dtype = tf.complex128) # Printing the input tensor print ( 'Input: ' , a) # Calculating result res = tf.math.reciprocal( a) # Printing the result print ( 'Result: ' , res) |
Output:
Input: tf.Tensor([ 1.+3.j 2.-5.j -3.+7.j -4.-8.j], shape=(4, ), dtype=complex128) Result: tf.Tensor( [ 0.1 -0.3j 0.06896552+0.17241379j -0.05172414-0.12068966j -0.05 +0.1j ], shape=(4, ), dtype=complex128)