Friday, January 10, 2025
Google search engine
HomeLanguagesPython – tensorflow.math.less_equal()

Python – tensorflow.math.less_equal()

TensorFlow is open-source Python library designed by Google to develop Machine Learning models and deep learning  neural networks. 

less_equal() is used to find element wise truth value of x<=y. It supports broadcasting

Syntax: tensorflow.math.less_equal( x, y, name)

Parameters:

  • x: It is a tensor. Allowed dtypes are float32, float64, int32, uint8, int16, int8, int64, bfloat16, uint16, half, uint32, uint64.
  • y: It is a tensor of same dtype as x.
  • name(optional): It defines the name of the operation

Returns: It returns a tensor of type bool.

Example 1:

Python3




# importing the library
import tensorflow as tf
 
# Initializing the input tensor
a = tf.constant([7, 8, 13, 11], dtype = tf.float64)
b = tf.constant([2, 8, 14, 5],  dtype = tf.float64)
 
# Printing the input tensor
print('a: ', a)
print('b: ', b)
 
# Finding truth value
res = tf.math.less_equal(x = a, y = b)
 
# Printing the result
print('Result: ', res)


Output:

a:  tf.Tensor([ 7.  8. 13. 11.], shape=(4, ), dtype=float64)
b:  tf.Tensor([ 2.  8. 14.  5.], shape=(4, ), dtype=float64)
Result:  tf.Tensor([False  True  True False], shape=(4, ), dtype=bool)

Example 2: In this example broadcasting will be performed on input.

Python3




# Importing the library
import tensorflow as tf
 
# Initializing the input tensor
a = tf.constant([7, 8, 13, 11], dtype = tf.float64)
b = (8)
 
# Printing the input tensor
print('a: ', a)
print('b: ', b)
 
# Finding truth value
res = tf.math.less_equal(x = a, y = b)
 
# Printing the result
print('Result: ', res)


Output:

a:  tf.Tensor([ 7.  8. 13. 11.], shape=(4, ), dtype=float64)
b:  8
Result:  tf.Tensor([ True  True False False], shape=(4, ), dtype=bool)

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments